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a b s t r a c t

Previous theoretical analyses of evolutionary multi-objective optimization (EMO) mostly
focus on obtaining �-approximations of Pareto fronts. However, in practical applications,
an appropriate value of � is critical but sometimes, for a multi-objective optimization prob-
lem (MOP) with unknown attributes, difficult to determine. In this paper, we propose a
new definition for the finite representation of the Pareto front—the adaptive Pareto front,
which can automatically accommodate the Pareto front. Accordingly, it is more practical to
take the adaptive Pareto front, or its �-approximation (termed the �-adaptive Pareto front)
as the goal of an EMO algorithm. We then perform a runtime analysis of a (lþ 1) multi-
objective evolutionary algorithm ((lþ 1) MOEA) for three MOPs, including a discrete
MOP with a polynomial Pareto front (denoted as a polynomial DMOP), a discrete MOP with
an exponential Pareto front (denoted as an exponential DMOP) and a simple continuous
two-objective optimization problem (SCTOP). By employing an estimator-based update
strategy in the (lþ 1) MOEA, we show that (1) for the polynomial DMOP, the whole Pareto
front can be obtained in the expected polynomial runtime by setting the population size l
equal to the number of Pareto vectors; (2) for the exponential DMOP, the expected polyno-
mial runtime can be obtained by keeping l increasing in the same order as that of the
problem size n; and (3) the diversity mechanism guarantees that in the expected polyno-
mial runtime the MOEA can obtain an �-adaptive Pareto front of SCTOP for any given
precision �. Theoretical studies and numerical comparisons with NSGA-II demonstrate
the efficiency of the proposed MOEA and should be viewed as an important step toward
understanding the mechanisms of MOEAs.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Recently, various soft computing techniques have been widely utilized in the fields of science and engineering
[30,37,9,22,36,39]. One set of powerful soft computing method is multi-objective evolutionary algorithms (MOEAs). These
algorithms can explore the feasible spaces of multi-objective optimization problems (MOPs) to obtain uniformly distributed
Pareto vectors, which has been shown by abundant numerical results [41,24,42,10,43,21,11,2,38,44,7,13,23,29,34,35]. Mean-
while, theoretical studies of convergence [26,25,16,40,32,8,1] and runtime analyses [14,26,28,31,5,6,18,19,3,15,20,4,12,33]
have also been performed to explain how MOEAs function on different MOPs.

Laumanns et al. [27,28] investigated the ‘‘leading ones, trailing zeros’’ (LOTZ) problem and demonstrated that the ex-
pected runtime of the simple evolutionary multi-objective optimizer (SEMO) for LOTZ is Hðn3Þ. Giel [14] extended the run-
time analysis to the Global SEMO (GSEMO) by investigating the LOTZ problem and another simple test problem, and
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Neumann [31] found that the GSEMO can accommodate the Pareto front of a multi-objective minimum-spanning tree prob-
lem in the expected pseudo-polynomial runtime if the Pareto front is strongly convex. Moreover, Horoba [20] showed that
the diversity-maintaining evolutionary multi-objective optimizer (DEMO) is a fully polynomial-time randomized approxi-
mation scheme for multi-objective shortest path problems. To theoretically confirm the efficiencies of hypervolume-based
MOEAs, Beume et al. [3] compared the individual-based S metric selection evolutionary multi-objective optimization algo-
rithm (SMS-EMOA) with the single-individual models of the nondominated sorting genetic algorithm II (NSGA-II) and the
improved strength Pareto evolutionary algorithm (SPEA2), and then investigated the convergence rates of several popula-
tion-based variants of SMS-EMOA [4].

By adding objectives to a well-known plateau function, Brockhoff et al. [6] found that changes in running time are caused by
changes in the dominance structure. Subsequently, Schütze et al. [33] demonstrated that even if an increase in the number of
objectives makes the problem more difficult, this increase in difficulty is sometimes not significant. Moreover, Laumanns et al.
[28] verified the population’s beneficial function through rigorous runtime analyses, while Giel and Lehre [15] further declared
that therecouldbeanexponential runtimegapbetweenthepopulation-basedalgorithmsandsingle individual-basedalgorithms.

To understand the convergence properties of population-based MOEAs more concretely, Brockhoff et al. [5] analyzed the
hypervolume-based MOEAs and obtained a polynomial upper bound on the expected runtime—to obtain an �-approximation
of an exponentially large Pareto front. By analyzing the runtime behaviors of MOEAs employing different diversity-preserv-
ing mechanisms, Friedrich et al. [12] demonstrated that certain mechanisms can improve the efficiencies of MOEAs on cer-
tain MOPs. Meanwhile, Horoba and Neumann [18,19] proposed several sufficient conditions for obtaining �-Pareto sets of
some MOPs they investigated. The theoretical results showed that although an �-dominance approach can help achieve a
good approximation for a Pareto set for some MOPs, this approach sometimes prevents the population from distributing uni-
formly along a small Pareto front. However, an MOEA based on a density estimator performs well in this case.

Existing theoretical results on runtime analysis have generally focused on dominance- or indicator-based MOEAs that
were employed to obtain an �-Pareto front of an MOP. To obtain an �-Pareto front, the population size l must be greater
than or equal to a given threshold M, and the case where l < M has not yet been considered. For a given precision �, it is
hardly feasible to choose a proper population size l when an MOP with unknown attributes is encountered, whereas a large
population will lead to high computation complexity and a small approximate Pareto front cannot represent the whole Par-
eto front precisely. By incorporating a fitness function compatible with the dominance relation in a (lþ 1) MOEA, we take a
so-called adaptive Pareto front [8] as the destination of population evolution, which can automatically accommodate the
true Pareto front. Compared with NSGA-II and SPEA2, the (lþ 1) MOEA employs a strategy of population update based
on a fitness function, by which the selection pressure can be greatly improved when applied to many-objective evolutionary
problems. It can also eliminate the essential difficulty of the multi-objective evolutionary algorithm based on decomposition
(MOEA/D), that is, the difficulty of generating a uniformly-distributed vector set guiding the evolution of the population.
Then, we estimate the expected runtime of a (lþ 1) MOEA for obtaining adaptive Pareto fronts or �-adaptive Pareto fronts
of MOPs. The major contributions of this paper include:

� We take the adaptive Pareto front as the destination of population evolution, and in this way, eliminate the difficult
task of selecting a rational population size for a given precision �.

� We theoretically demonstrate that if the (lþ 1) MOEA is utilized to solve a discrete MOP with polynomial Pareto
vectors (the LOTZ), it is more efficient to set the population size equal to the number of Pareto vectors rather than
employ a small population to obtain a uniform representation of the Pareto front.

� For a discrete MOP, when the number of Pareto vectors is of exponential order (the LF 0
d), the universal upper bound of

the expected runtime is also exponential. However, a polynomial increase in the expected runtime can also be
obtained by setting k� 1 < n

l 6 k for a given positive constant k, where n is the problem size and l is the population
size.

� We demonstrate that a (lþ 1) MOEA based on a density estimator is a good solver for an MOP with a Pareto front
that is a continuous curve because, for any e > 0, it can obtain an e-approximation of the adaptive Pareto front in the
expected polynomial runtime.

� By comparing a variant of the proposed (lþ 1) MOEA, termed the (lþ l) MOEA, with NSGA-II, we also show that the
proposed method is competitive with some existing MOEAs.

The remainder of this paper is organized as follows. Section 2 introduces some preliminaries on MOPs and MOEAs, and in
Section 3, we perform the runtime analysis of the proposed (lþ 1) MOEA for the three MOPs under investigation. To dem-
onstrate the efficiency of the newly proposed MOEA, we compare numerical results with the NSGA-II in Section 4. Finally,
Section 5 concludes the paper and presents future work to be carried out.

2. Preliminaries

2.1. Multi-objective optimization problems

In general, an MOP with m objectives is described as
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max FðxÞ ¼ ðf1ðxÞ; f 2ðxÞ; � � � ; f mðxÞÞ; ð1Þ
where x ¼ ðx1; � � � ; xnÞ 2 Sx #Rn, u ¼ ðu1; � � � ;umÞ ¼ ðf1ðxÞ; � � � ; fmðxÞÞ 2 Sy #Rm. Sx, the set of all feasible solutions, is called the
feasible region, and Sy ¼ FðSxÞ is called the objective region. When the design variables are real-valued, the problem is called a
continuous multi-objective optimization problem (CMOP); however, if the variables are restricted to discrete values, the MOP is
called a discrete multi-objective optimization problem (DMOP). The optimal solutions of an MOP are the so-called Pareto
solutions.

Definition 1. Let u ¼ ðu1; . . . ;umÞ and v ¼ ðv1; . . . ;vmÞ be two vectors in the objective region Sy of MOP (1).

1. (Pareto Dominance) u is said to Pareto dominate v, denoted as u � v, if and only if
(a) u weakly dominates v (denoted as u � v), i.e., 8 i 2 f1; . . . ;mg : ui P v i;
(b) 9 j 2 f1; . . . ;mg : uj > v j.

2. (Pareto Front & Pareto Set)
(a) A vector u 2 Sy is called a Pareto vector of MOP (1) if there exists no v 2 Sy satisfying v � u. The set of all Pareto vec-

tors of MOP (1) is called the Pareto front of MOP (1), denoted as PF;
(b) A feasible solution x 2 Sx is called a Pareto solution of MOP (1) if FðxÞ is a Pareto vector of MOP (1). All Pareto solu-

tions of MOP (1) constitute the Pareto set of MOP (1), denoted as PS.

Sometimes, there are several feasible solutions corresponding to a common objective vector, in which case they are called
indifferent. Indifferent solutions can be represented by their common objective vector. Therefore, our goals are to achieve
reasonable approximations of the Pareto fronts and to estimate the expected runtime required for MOEAs to obtain such
approximations. For a CMOP, the total number of Pareto vectors is usually uncountable, while the number of Pareto vectors
for DMOPs is often finite.

Definition 2. Denote n to be the number of decision variables of an MOP. According to the number of Pareto vectors, DMOPs
can be divided into two different categories:

1. polynomial DMOPs, where the number of Pareto vectors is OðnkÞ; k 2 Zþ;
2. exponential DMOPs, where the number of Pareto vectors is XðknÞ; k > 1.

In the following, three MOPs are investigated to demonstrate the efficiency of the proposed MOEA.

2.1.1. The LOTZ problem
The LOTZ problem is a polynomial DMOP defined as

max LOTZðxÞ ¼ ðLOTZ1ðxÞ; LOTZ2ðxÞÞ ¼
Xn
i¼1

Yi
j¼1

xj;
Xn
i¼1

Yn
j¼i

ð1� xjÞ
 !

;

where x ¼ ðx1; x2; . . . ; xnÞ 2 f0;1gn. According to the sum of both objective values, the objective region of LOTZ can be parti-
tioned into nþ 1 sets Fi; i ¼ 0;1; . . . ;n, where the index i corresponds to the sum of both objectives (see Fig. 1). Obviously,
Fn ¼ ;, and Fn þ 1 is the Pareto front [28].

2.1.2. The LF 0
d problem

Let x ¼ ðx1; . . . ; xnÞ be a binary string, and assume that n is even. We denote the first half of x by ‘ðxÞ ¼ ðx1; . . . ; xn=2Þ, and
we denote its second half by �hðxÞ ¼ ðxn=2þ1; . . . ; xnÞ. For a bit string b, we denote its length by jbj, the number of 1-bits by jbj1,
and its complement by �b. Then, the real value of a bit-string x is

BVðxÞ ¼
Xjxj
i¼1

2jxj�i � xi;

and the LF 0
d problem [19] is described as

max LF 0
dðxÞ ¼ LF 0

d;1ðxÞ; LF 0
d;2ðxÞ

� �
;

where

LF 0
d;1ðxÞ :¼

ð2 � j‘ðxÞj1 þ 2�n=2 � BVð�hðxÞÞÞ � d minfj‘ðxÞj1; j‘ðxÞj1g P
ffiffiffi
n

p
;

2 � j‘ðxÞj1 � d otherwise;

(
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LF 0
d;2ðxÞ :¼

ð2 � j‘ðxÞj1 þ 2�n=2 � BVð�hðxÞÞÞ � d minfj‘ðxÞj1; j‘ðxÞj1g P
ffiffiffi
n

p
;

2 � j‘ðxÞj1 � d otherwise:

(

All feasible solutions of the LF 0
d problem are Pareto solutions. When minfj‘ðxÞj1; j‘ðxÞj1g <

ffiffiffi
n

p
, then n=2

j‘ðxÞj1

� �
� 2n=2 feasible

solutions with the same value of j‘ðxÞj1 are mapped to the common Pareto vector ð2 � j‘ðxÞj1 � d;2 � j‘ðxÞj1 � dÞ; otherwise, a Par-

eto vector ðð2 � j‘ðxÞj1 þ 2�n=2 � BVð�hðxÞÞÞ � d; ð2 � j‘ðxÞj1 þ 2�n=2 � BVð�hðxÞÞÞ � dÞ is the image of n=2
j‘ðxÞj1

� �
decision vectors that

have the same values of j‘ðxÞj1 and BVð�hðxÞÞ. Thus, LF 0
d is an exponential DMOP with a Pareto front including H n2

n
2

� �
Pareto

vectors (see Fig. 2)

2.1.3. The SCTOP problem
A simple continuous two-objective optimization problem (SCTOP) is described as:

max Gðx1; x2Þ ¼ ðg1ðx1; x2Þ; g2ðx1; x2ÞÞ ¼ ð x1=dd ex2; x1=dd eð1� x2ÞÞ; ð2Þ
where d 2 ð0;1Þ; x1; x2 2 ½0;1�. Then, the Pareto front is a line segment defined by (see Fig. 3)

g1 þ g2 ¼ 1=dd e; g1 2 ½0;1�:

2.2. Definitions on finite approximations of Pareto fronts

It is ideal to obtain all the Pareto vectors using MOEAs, but this is sometimes impractical, especially when the number of
Pareto vectors is extremely large. In this case, a relatively small population is employed to obtain a well-distributed approx-
imation of the Pareto front.

Fig. 1. Objective space of the LOTZ problem for n ¼ 8.
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Fig. 2. Objective space of the LF 0
d problem for d ¼ 1 and n ¼ 36.
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Definition 3. Let u ¼ ðu1; . . . ;umÞ and v ¼ ðv1; . . . ;vmÞ be two vectors in the objective region Sy of MOP (1).

1. (�-Dominance) u is said to �-dominate v for some � > 0, denoted as u �� v, iff for all i 2 f1; . . . ;mg,

ð1þ �Þ � ui > v i;

2. (Additive �-Dominance) u is said to additively �-dominate v for some � > 0, denoted as u�þ
� v, iff for all i 2 f1; . . . ;mg,

ui þ � > v i:

Based on the respective definitions of �-dominance and additive �-dominance, we define the following approximations of
the Pareto front.

Definition 4. For some � > 0, let F�� be a set of Pareto vectors of MOP (1).

1. (�-Pareto Front) If any objective vector v of MOP (1) is �-dominated by at least one vector u 2 F�
�; F

�
� is called an �-Pareto

front of MOP (1);

2. (Additive �-Pareto Front) If any objective vector v of MOP (1) is additively �-dominated by at least one vector u 2 F�
�; F

�
� is

called an additive �-Pareto front of MOP (1).

The �-Pareto front1 is a popular definition of approximate Pareto fronts in most recent theoretical results of MOEAs
[26,16,5,12,18,32,19,20]. However, to obtain an �-Pareto front of an MOP for a given diversity index �, the population size l
must be greater than a problem-dependent threshold value [5,18,19]. Otherwise, the distance between two adjacent solutions
could be too large to �-dominate some Pareto solutions. Additionally, the population size of a practical MOEA cannot be too
large because large populations will lead to high time-complexity of MOEAs. Thus, values of l and � must be chosen carefully,
which could be a difficult undertaking because the MOPs under investigation are usually unfamiliar before they have been stud-
ied in depth. Thus, we consider another definition of the finite approximations of Pareto fronts [8], called the adaptive Pareto
front.

Definition 5. Let u and v represent two objective vectors in Sy.

1. (Weak d-Ball Dominance) 8 d 2 Rþ;u is said to weakly d-ball dominate v (in short u � dv) with respect to MOP (1), if
there exists a w 2 Uðu; dÞ with w � v, where Uðu; dÞ ¼ fw 2 Rm; kw� uk2 6 dg.

2. (Adaptive Pareto Front) Let QA be a set of N Pareto vectors, and u� 2 QA be a Pareto vector with

0 2 4 6 8 10
0

2

4

6

8

10

Fig. 3. Objective space of the SCTOP problem for d ¼ 0:1.

1 Although there are some differences between the �-Pareto front and the additive �-Pareto front, they are both defined based on a predetermined index �,
which leads to their common shortcoming that � is critical but sometimes hard to predetermine beforehand. Thus, in the following we will not distinguish
between them, and will call both the ‘‘�-Pareto front’’.
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du� ¼ min
u–v

u;v 2 QA

ku� vk2:

QA is said to be an adaptive Pareto front of MOP (1) of size N, if for any v 2 Sy, there exists a u 2 QA satisfying u � du� v. A
set PA of N feasible solutions is called an adaptive Pareto set of MOP (1) of size N, if FðPAÞ is an adaptive Pareto front of MOP
(1) of size N.
3. (�-Adaptive Pareto Front) Let QA be an adaptive Pareto front of MOP (1) of size N, and let Q�

A 	 Sy be a set of N objective
vectors. Q�

A is said to be an �-adaptive Pareto front of MOP (1) of size N, if for all u� 2 QA, there exists a u 2 Q�
A such that

ku� � uk2 < �. A set P�
A of N feasible solutions is called an �-adaptive Pareto set of MOP (1) of size N, if F P�

A

� �
is an �-

adaptive Pareto front of MOP (1) of size N.

Because the adaptive Pareto front of an MOP of size N is confirmed by the population size rather than a given diversity
index, it always exists no matter how large N is. Furthermore, when the exact adaptive Pareto front cannot be obtained prac-
tically,2 an �-adaptive Pareto front of an MOP of size N is also acceptable. In the remainder of this paper, the adaptive Pareto
front of an MOP of size N and the �-adaptive Pareto front of an MOP of size N are shortened to ‘‘the adaptive Pareto front’’
and ‘‘�-adaptive Pareto front’’, respectively.

2.3. The proposed MOEA

To estimate the runtime of an MOEA, its convergence is usually investigated using a properly defined fitness function
satisfying

FðxÞ � FðyÞ ) dðxÞ < dðyÞ:

However, if the Pareto solutions do not have the same fitness value, such a fitness function always drives the individuals to
converge to a local part of the Pareto front, which does not meet the requirement of achieving a uniform approximation of
the true Pareto front. To overcome this weakness, this paper investigates fitness functions that are compatible with the dom-
inance relation.

Definition 6. Let dðxÞ be a function defined in the feasible region Sx of MOP (1). dðxÞ is called a fitness function compatible
with the dominance relation, if the following hold:

1. FðxÞ � FðyÞ ) dðxÞ > dðyÞ;
2. dðxÞ ¼ M () x 2 PS, where M 2 Rþ.

Update strategies based on fitness functions compatible with the dominance relation will not prefer any local part of the
Pareto front. Subsequently, by employing extra diversity strategies, MOEAs can obtain a uniform distribution of the Pareto
front. A universal framework of (lþ 1) MOEAs is illustrated by Algorithm 1. First, a population of size l is generated ran-
domly. Then, a new candidate solution x0 is generated to update the population PðtÞ repeatedly until the stopping criterion
is satisfied. In this paper, the stopping criterion is finding an adaptive (or �-adaptive) Pareto front.

For discrete MOPs, the ‘‘DGenerate ()’’ function described in Algorithm 2 is utilized to generate a new solution, whereas
the real-coded (lþ 1) MOEA employs the update function ‘‘CGenerate ()’’ described by Algorithm 3 to solve continuous
MOPs. After a new candidate is generated, the ‘‘Update’’ function renews the population via Algorithm 4, where the gover-
nance relation is used to compare non-dominated solutions.

Definition 7. Let x and y be two feasible solutions of MOP (1). It is said that x governs y, denoted as x / y, if it holds that

1. dðxÞ P dðyÞ;
2. Distðx;PðtÞ n fx; ygÞ > Distðy;PðtÞ n fx; ygÞ,

where dðxÞ is a fitness function compatible with the dominance relation. The distance function Distð�; �Þ is defined by

Distðx;Q Þ ¼ min
z2Q

distðx; zÞ ¼ min
z2Q

kFðxÞ � FðzÞk2:

2 When the investigated MOP is a continuous problem, or when the expected runtime of obtaining the exact adaptive Pareto front is unacceptable, it is
impractical to obtain the exact adaptive Pareto front.
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Above all, the ‘‘Update ()’’ function tries to save all non-dominated solutions that are found. If the number of non-dom-
inated solutions is less than or equal to the population size l, they are all saved. If the l individuals in PðtÞ and x0 are non-
dominated with each other, the ‘‘Update ()’’ function sorts the population according to the distance value Dðx;P n fxgÞ. An
individual y with Dðy;P n fygÞ ¼ minx2PDðx;P n fxgÞ is called the worst individual in the population, denoted as xw; an indi-
vidual y with Dðy;P n fygÞ ¼ maxx2PDðx;P n fxgÞ is called the best individual in the population, denoted as xb. If x0 / xw, then
xw 2 PðtÞ is replaced by x0; otherwise, x0 is compared with a randomly selected individual y and replaces y if x0 / y. Because
only one individual is generated at each generation, in this paper, we perform the runtime analysis by estimating expected
iterations of the (lþ 1) MOEA consisting of Algorithms 1, 2 or 3 and 4, and ‘‘runtime’’ refers to the number of iterations
before stopping.

Algorithm 1. Multi-objective Evolutionary Algorithm (MOEA)

1: Set generation t ¼ 1;
2: Randomly generate a population PðtÞ of l individuals;
3: while the stop criterion is not satisfied
4: x0 ¼ GenerateðPðtÞÞ;
5: Pðtþ1Þ ¼ UpdateðPðtÞ;x0Þ;
6: t ¼ t þ 1;
7: end while
8: Output the results.

Algorithm 2. DGenerateðPðtÞÞ

1: Select an individual x from PðtÞ randomly;
2: Generate a candidate x0 by flipping each bit of x with probability 1

n;
3: Output x0.

Algorithm 3. CGenerateðPðtÞÞ

1: Select an individual x from PðtÞ randomly;
2: Generate a candidate x0 by

x0 ¼ xþ Dx;

where Dx is a random variable obeying the normal distribution Nð0;rÞ.
3: Output x0.

Algorithm 4. UpdateðPðtÞ;x0Þ

1: if 9x 2 PðtÞ such that x � x0 _ FðxÞ ¼ Fðx0Þ then
2: P ¼ PðtÞ;
3: else
4: P ¼ PðtÞ n fx 2 PðtÞjx0 � xg.
5: if SizeðPÞ 6 l� 1 then
6: P ¼ P [ fx0g;
7: else
8: Sort P according to the distance value Dðx;P n fxgÞ;
9: if x0 / xw then
10: P ¼ P n fxwg [ fx0g;
11: else

68 Y. Chen, X. Zou / Information Sciences 262 (2014) 62–77
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12: Select an individual y from P randomly;
13: if x0 / y then
14: P ¼ P n fyg [ fx0g;
15: end if
16: end if
17: end if
18: end if
19: Output P.

Based on a fitness function f ðxÞ compatible with the dominance relation, the feasible region is a totally ordered set. Thus,
the selection pressure of update strategies based on f ðxÞ could be greater than update strategies based only on the domi-
nance relation, which make MOEAs efficient for many-objective optimization problems. A fitness function compatible with
the dominance relation has been presented in [8], where the true Pareto front of the investigated MOPs must be known.
However, if the Pareto front is not known in advance, an MOEA can employ a practical approximation defined as follows.

Example 1. Let P be the population of the (lþ 1) MOEA described in Algorithms 1–4, and let x1; . . . ;xl be l non-dominated
individuals in P. When the (lþ 1) MOEA is utilized to solve MOP (1), a new candidate x0 competes with x to survive into the
next generation. Let xk1 ; . . . ; xkm be the m nearest non-dominated individuals of x when considered in terms of Euclidean
distances in the objective space. Then, we can define the fitness values of x and x0 by

dAðyÞ ¼
Xm
i¼1

fiðyÞ � 1
m

Xm
j¼1

fiðxkj Þ
 !

: ð3Þ

Although the fitness function dAð�Þ is defined via the present population of an MOEA, it actually holds that dAðx0Þ < dAðxÞ if the
new candidate x0 � x. According to the definition, if the (lþ 1) MOEA has obtained l Pareto solutions and the diversity of
the population is well preserved, the fitness value of Pareto solutions in the population will be almost identical. In this case,
the difference among the fitness values of all Pareto solutions could be small enough if the population size l is sufficiently
large.

3. Runtime analysis of the (lþ 1) MOEA on three investigated MOPs

3.1. Obtaining the whole Pareto front of LOTZ

For LOTZ, Laumanns et. al [27,28] showed that the SEMO with an unbounded archive can obtain the whole Pareto front in
expected runtime Hðn3Þ. Moreover, when the population size is fixed to be l greater than nþ 1 (the total number of Pareto
vectors of LOTZ), the (lþ 1) simple indicator-based evolutionary algorithm (SIBEA) can locate the nþ 1 Pareto vectors of
LOTZ in Oðln2Þ [5]. Defining dðxÞ to be the sum of two objective values of an individual x, we obtain the following result
for the expected runtime of the (lþ 1) MOEA with l 6 nþ 1.

Theorem 1. When l 6 nþ 1, the (lþ 1) MOEA consisting of Algorithms 1, 2 and 4 achieves an adaptive-Pareto front of the LOTZ

problem of size l in the expected runtime Oðln2 þ l2n
n

l�1

	 

Þ.

Proof. Denote P as the population of the (lþ 1) MOEA, and xw as the worst individual in the population. The evolving pro-
cess of the (l +1) MOEA contains two stages:

1. Converging to the Pareto front.
In the first stage, the population attempts to find l Pareto solutions. Because the probability of generating a new candi-
date x0 that dominates x is 1

n 1� 1
n

� �n�1
;x0 will replace x in the expected runtimeOðnÞ. For at most n steps, a Pareto solution

is obtained in the expected runtime Oðn2Þ.
When k Pareto solutions have been obtained, another Pareto solution can be generated with a probability greater than
1
k

1
n 1� 1

n

� �n�1. Then, one more Pareto solution can enter the population in the expected runtime OðknÞ. Thus, to obtain
l Pareto solutions, the expected runtime is Oðl2nÞ.
Subsequently, the (lþ 1) MOEA can obtain l Pareto solutions of LOTZ in the expected runtime Oðn2 þ l2nÞ.

2. Spreading along the Pareto front.
After the population P has changed into a set of Pareto solutions, the diversity strategy drives the population to evolve
into a reasonable representation of the Pareto front.
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(a) First, two of the obtained Pareto vectors will move to the two respective boundary positions of the Pareto front.
Because the leftmost and the rightmost vectors can always move toward the two boundary points of the Pareto front
with a probability greater than 1

l
1
n 1� 1

n

� �n�1, the total expected time of at most n steps is Oðln2Þ. Then, if an adaptive
Pareto front is not obtained, additional iterations are needed for the (lþ 1) MOEA to obtain an adaptive Pareto front.
Meanwhile, if two individuals have reached the two boundary points of the Pareto front, they would not move further,
because such a move would lead to a decrease in the value of Dðx;P n fxgÞ. Thus, in the following, we consider only
the case when there are two individuals located on the boundary places of the Pareto front.

(b) If 1 < n
l�1 < 2, the individuals will move along the Pareto front with a probability greater than 1

l
1
n 1� 1

n

� �n�1. Because
the total number of Pareto solutions is n, an adaptive Pareto front can be obtained after at most n steps. The expected
runtime of this procedure is Oðln2Þ.

(c) If n
l�1 is equal to an integer k P 2, the spreading process of the population can be divided into two steps.

i. When min x–y
x; y 2 P

distðx; yÞ < k
2

	 

, there are two points x�; y� with distðx�; y�Þ 6 k

2

	 
� 1. Moreover, if there exists no

xP 2 PS n P with DistðxP ;PÞ ¼ k
2

	 

, the distance between any two adjacent vectors in LOTZðPÞ is always less than

2 k
2

	 

, which does not hold because ðl� 2Þ 
 ð2
 k

2

	 
� 1Þ þ k
2

	 
� 1 is necessarily less than n. Thus, the population
can evolve into a set of Pareto solutions with

min
x–y
x; y 2 P

distðx; yÞ P k
2

� �
;

which can be obtained as follows.
If there exists an xP 2 PS n P with DistðxP;PÞ ¼ k

2

	 

, it is generated with a probability greater than 1

l
1
n

� � k
2b c 1� 1

n

� �n� k
2b c.

Then, when there exists an individual xw 2 P with Distðxw;P n fxwgÞ < k
2

	 

, it will be replaced by xP in the expected

runtime Oðln k
2b cÞ. For the worst case,

Distðx;P n fxwgÞ < k
2

� �

holds for all x 2 P. Thus, after at most l updates, the distance between any two individuals in the population is great-
er than or equal to k

2

	 

, and the total expected runtime of this procedure is Oðl2n

k
2b cÞ.

ii. In the second step, the whole population will evolve into an adaptive Pareto front. Denoting

M ¼ min x–y
x; y 2 P

distðx; yÞ, we have M 6 k. Then, if there exists a Pareto solution xP 2 PS n P with

DistðxP ;PÞ ¼ M þ 1; xP is generated to replace the worst individual xw with Distðxw;P n fxwgÞ ¼ M in expected time

OðlnMþ1Þ, and one of the following two cases arises.

A. For at most l times, we have minx–ydistðx; yÞ ¼ M þ 1 for all x; y 2 P, and the expected time is Oðl2nMþ1Þ.
B. Otherwise, after tðt 6 lÞ updates the minimum value of the distances between any two different individuals in the

population is still M, and there are no Pareto solutions xP 2 PS n P with DistðxP ;PÞ P M. Thus, an adaptive Pareto
front is obtained, and the expected time is also Oðl2nMþ1Þ.

After at most k
2

 �
repetitions of the aforementioned procedure, the adaptive Pareto front is obtained in the expected runtime

Oðl2nMþ1Þ þ Oðl2nMþ2Þ þ . . .þOðl2nkÞ ¼ Oðl2nkÞ:

(d) If k < n
l�1 < kþ 1; k ¼ 2;3; . . ., from the arguments for the case of n

l�1 we can conclude that after Oðl2nkÞ expected
steps, the population will evolve to a set of Pareto solutions in which the distance between two adjacent points is less
than or equal to k. Then, if P is not an adaptive Pareto set, the individuals will move along the Pareto front with a
probability greater than 1

l
1
n 1� 1

n

� �n�1. Because the total number of Pareto solutions is n, an adaptive Pareto front
can be obtained after at most n steps, and the expected runtime of this procedure is Oðln2Þ. Consequently, the
expected runtime in this case is also Oðl2nkÞ.

In conclusion, the expected runtime until the (l +1) MOEA has obtained an adaptive Pareto front of LOTZ of size l is
Oðln2 þ l2nb n

l�1cÞ. h
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Because the (lþ 1) MOEA obtains l(6 nþ 1) Pareto vectors in Oðn2 þ l2nÞ, by setting l ¼ nþ 1 it accommodates the
whole Pareto front of LOTZ in expected runtime Oðn3Þ. When l < nþ 1, to obtain an adaptive Pareto front extra iterations
are required to create a uniform distribution along the Pareto front, and accordingly, the expected runtime of this process is

Oðl2n
n

l�1

j k
Þ. Thus, when n

2 þ 1 < l 6 nþ 1, it holds that n
l�1

j k
¼ 1, and both the expected runtime of the converging process

and that of the spreading process are Oðn3Þ. However, when l < n
2 þ 1; n

l�1

j k
is necessarily greater than or equal to 2, and the

expected runtime of the spreading process is at least Oðl2n2Þ, which is greater than that of the converging process. Then,
regarding the LOTZ problem, we can conclude that for the proposed (lþ 1) MOEA, it is better to obtain all of the Pareto vec-
tors instead of a uniformly distributed representation of the Pareto front, even if the problem size n is very large.

3.2. Achieving a reasonable approximate Pareto front of the LF 0
d problem

It has been shown that when the population size is greater than some problem-dependent value, some MOEAs can obtain
an �-approximation of an exponentially large Pareto front with � ¼ d in the polynomial expected runtime [5,18,19]. By defin-
ing dðxÞ to be the sum of two objective values of an individual x, we estimate here the expected runtime until the (lþ 1)
MOEA has achieved a reasonable approximation of the Pareto front for the case l 6 n

2 þ 1.

Theorem 2. When l 6 n
2 þ 1, the (lþ 1) MOEA consisting of Algorithms 1, 2 and 4 achieves a d-adaptive Pareto front of LF 0d of

size l in the expected runtime O ln lognþ ln
n=2
l�1

	 

logn

� �
.

Proof. Let x and y be two individuals in the population P. If j‘ðxÞj1 ¼ j‘ðyÞj1; distðx; yÞ < d holds. Otherwise, we have

ð2kþ 1Þd > distðx; yÞ > ð2k� 1Þd ð4Þ
when jj‘ðxÞj1 � j‘ðyÞj1j ¼ k; k ¼ 1;2; . . . ; n2.

1. First, two obtained Pareto vectors can move to the two boundary points of the Pareto front. If there are i 1-bits in the first
half part of the present individual x, the probability of generating a new candidate y with jj‘ðxÞj1 � j‘ðyÞj1j ¼ 1 is greater
than

min
n
2
� i; i

n o 1
l

1
n

1� 1
n

� �n
2�1

:

Thus, it costs at most n
2 steps for two individuals to move to two boundary positions of the Pareto front, and the expected

runtime of this procedure is less than

Xn
2

i¼0

ln
min n

2 � i; i
� �

1� 1
n

� �n
2�1 ¼ Oðln lognÞ:

2. If 1 6 n=2
l�1 < 2, the individuals will move along the Pareto front with a probability greater than

min
n
2
� i; i

n o 1
l

1
n

1� 1
n

� �n
2�1

;

where i is the number of 1-bits in the first half part of the individual. Because the total number of Pareto solutions is n
2, after at

most n steps a d-adaptive Pareto front can be obtained, and the expected runtime of this procedure is also Oðln lognÞ.
3. If n=2

l�1 is an integer k P 2, the spreading process of the population is divided into two steps.
(a) When

min
x–y

x; y 2 P

jj‘ðxÞj1 � j‘ðyÞj1j <
k
2

� �
;

there are two points x�; y� with jj‘ðx�Þj1 � j‘ðy�Þj1j 6 bk2c � 1. If there are no xP 2 PS n P with minx2Pjj‘ðxPÞj1 � j‘ðxÞj1j ¼ bk2c, the
distance between any two adjacent vectors in LF 0

dðPÞ is always less than 2bk2c, which does not hold because
ðl� 2Þ 
 ð2
 bk2c � 1Þ þ bk2c � 1 is necessarily less than n=2. Thus, the population can evolve into a set of Pareto solutions
with

min
x–y

x; y 2 P

jj‘ðxÞj1 � j‘ðyÞj1j P
k
2

� �
;
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which can be obtained as follows.
If there exists an xP 2 PS n P with minx2Pjj‘ðxPÞj1 � j‘ðxÞj1j ¼ k

2

	 

, it is generated with a probability greater than

1
l

min
j‘ðxÞj1

k

� �
;

n
2 � j‘ðxÞj1

k

� �� �
1
n

� � k
2b c

1� 1
n

� �n� k
2b c
;

where i represents the number of 1-bits in the first half part of the selected individual, and xP will replace the worst indi-
vidual xw 2 P in expected time

ln k
2b c

min
j‘ðxÞj1

k

� �
;

n
2 � j‘ðxÞj1

k

� �� � 6 ln k
2b c

min j‘ðxÞj1; n2 � j‘ðxÞj1
� � :

After at most l updates, the distance between any two individuals is greater than or equal to k
2

	 

. Let the l generated can-

didates be x1; . . . ;xl. The total expected runtime of this procedure is less than

Xl
j¼1

n
k
2b c

min j‘ðxjÞj1; n2 � j‘ðxjÞj1
� � 6

Xn
i¼1

n
k
2b c

min i; n2 � i
� � ¼ O ln k

2b c logn
� �

:

(b) In the second step, a d-adaptive Pareto front can be obtained. Denoting M ¼ minx;y2Pjj‘ðxÞj1 � j‘ðyÞj1j, we have M 6 k.
Then, if there exists a Pareto vector xP R P with jj‘ðxÞj1 � j‘ðyÞj1j ¼ M þ 1, it is generated in expected time

lnMþ1

min j‘ðxÞj1 ;n2�j‘ðxÞj1f g. Thus, after at most l updates, the total expected time is OðlnMþ1 lognÞ, and the minimum distance

is greater than or equal toM þ 1. If this process is repeated when possible, then after at most k
2

 �
times, we will obtain

a d-adaptive Pareto front of LF 0
d of size l in the expected runtime

OðlnMþ1 lognÞ þ OðlnMþ2 lognÞ þ . . .þOðlnk lognÞ ¼ Oðlnk lognÞ:
4. If k < n=2

l�1 < kþ 1; k ¼ 2;3; . . ., the expected runtime is Oðlnk lognÞ, which can be obtained by arguments similar to those
made in case 3) in proof of Theorem 1.

In conclusion, the (lþ 1) MOEA achieves a d-adaptive Pareto front of LF 0d of size l in expected time

Oðln lognþ ln
n=2
l�1

	 

lognÞ. h

The result in Theorem 2 is similar to that of Theorem 1 because the Pareto front of LF 0
d can be divided into n

2 þ 1 grids
according to the number of 1-bits in the first half part of Pareto solutions. When l ¼ n

2 þ 1, in expected runtime
Oðln lognÞ the (lþ 1) can obtain a d-adaptive Pareto front of size l, which is also a d-approximation of the Pareto front.
However, when l < n

2 þ 1, we can conclude that the expected runtime of the (lþ 1) MOEA for the LF 0
d problem is actually

exponential. The reason is that when n is increased, the total number of grids on the Pareto front is also increased. Then,
if no adaptive mutation strategies are employed, the expected runtime of exploring the whole Pareto front will rise in the

order of Oðln
n=2
l�1

j k
lognÞ. However, the expected polynomial runtime can also be obtained if l is kept to HðnÞ. That is, when

n increases, we also enlarge the population size l to keep k 6 n=2
l�1 < kþ 1 for a constant integer k. In this way, the total ex-

pected runtime is Oðnkþ1 lognÞ, and the space complexity of the (lþ 1) MOEA increases on the order of HðnÞ.

3.3. Solving the SCTOP in the expected polynomial runtime

In this section, we investigate the runtime of (lþ 1) MOEA for the SCTOP problem. Although the techniques employed
here are similar to those utilized for the DMOPs, we come to an entirely different result for the expected runtime of
(lþ 1) MOEA.

8 x ¼ ðx1; x2Þ 2 ½0;1�2, the fitness function is defined as dðxÞ ¼ dx1d e. Thus, x is a Pareto solution if and only if dðxÞ ¼ 1
d

 �
.

Theorem 3. For SCTOP, the (lþ 1) MOEA consisting of Algorithms 1, 3 and 4 can find the first Pareto solution in the expected
runtime Oðr2Þ.

Proof. According to the update strategy of the (lþ 1) MOEA, the individual x ¼ ðx1; x2Þ will be replaced if a dominating can-
didate y ¼ ðy1; y2Þ is generated. Following such a strategy, the expected improvement of dðxÞ is

E dðyÞ � dðxÞjdðxÞ ¼ x1
d

l mh i
¼ E

y1
d

l m
� x1

d

l mh ���dðxÞ ¼ x1
d

l mi

¼
ZZ

D

y1
d

l m
� x1

d

l m� � 1
2pr2 exp �ðy1 � x1Þ2 þ ðy2 � x2Þ2

2r2

( )
dy1dy2;
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where D ¼ ðy1; y2Þj y1
d

 �
y2 P x1

d

 �
x2; 1� y1

d

 �� �
y2 P 1� x1

d

 �� �
x2

� �
. Thus,

E dðyÞ � dðxÞjdðxÞ ¼ x1
d

l mh i
P

1
2pr2

Z 1

d
x1
dd e

y1
d

l m
� x1

d

l m� �
exp �ðy1 � x1Þ2

2r2

( )
dy1

Z 1�dð1�x2 Þ
y1

x1
dd e

dx2
y1

x1
dd e

exp �ðy2 � x2Þ2
2r2

( )
dy2

By Taylor’s theorem, we know that

Z 1�dð1�x2 Þ
y1

x1
dd e

dx2
y1

x1
dd e

exp �ðy2 � x2Þ2
2r2

( )
dy2 ¼ exp �

dx2
y1

dx1d e � x2
� �2

2r2

8><
>:

9>=
>; 1� x1

d

l m d
y1

� �
þ o 1� x1

d

l m d
y1

� �2
 !

;

and then,

E dðyÞ � dðxÞjdðxÞ ¼ x1
d

l mh i

P
1

2pr2

Z 1

d
x1
dd e

y1
d

l m
� x1

d

l m� �
exp �ðy1 � x1Þ2

2r2

( )
dy1

Z 1�dð1�x2Þ
y1

x1
dd e

dx2
y1

x1
dd e

exp �ðy2 � x2Þ2
2r2

( )
dy2

¼ 1
2pr2

Z 1

d
x1
dd e

y1
d

l m
� x1

d

l m� �
exp �

dx2
y1

dx1d e � x2
� �2

2r2

8><
>:

9>=
>; 1� x1

d

l m d
y1

� �
dy1

þ 1
2pr2

Z 1

d
x1
dd e

dy1
d
e � x1

d

l m� �
� o 1� x1

d

l m d
y1

� �2
 !

dy1:

P
1

2pr2

Z 1

d
x1
dd e

y1
d
� dx1

d
e

� �
exp �

dx2
y1

x1
d

 �� x2
� �2

2r2

8><
>:

9>=
>; 1� x1

d

l m d
y1

� �
dy1

þ 1
2pr2

Z 1

d
x1
dd e

y1
d
� x1

d

l m� �
� o 1� x1

d

l m d
y1

� �2
 !

dy1:

Moreover, based on the fact that

Z 1

d
x1
dd e

y1
d
� x1

d

l m� �
exp �

dx2
y1

dx1d e � x2
� �2

2r2

8><
>:

9>=
>; 1� x1

d

l m d
y1

� �
dy1 ¼ 1

3
1

d2 x1
d

 � 1� d
x1
d

l m� �3
þ o 1� d

x1
d

l m� �3� �
;

we come to the result that E dðyÞ � dðxÞjdðxÞ ¼ x1
d

 �� �
is X 1

r2dx1

� �
. Thus, there exists a constant k 2 R such that

E dðyÞ � dðxÞjdðxÞ ¼ x1
d

l mh i
P k

1
r2dx1

P k
1
r2d

:

By Theorem 1 in [17], we know that the expected runtime to find a solution x with dðxÞ ¼ 1
d

 �
is Oðr2Þ. h

8 e > 0, the Pareto front of SCTOP can be divided into N ¼
ffiffi
2

p
e

l m
grids, where

ffiffiffi
2

p
is the length of the Pareto front. From the

leftmost grid to the rightmost grid, number the grids as 1;2; . . . ; d
ffiffi
2

p
e e, and set ½x� ¼ i when GðxÞ is located in the ith grid.

8 x; y 2 PS, the grid distance between two individuals is defined as

gdistðx; yÞ ¼ j½x� � ½y�j;
and the grid distance between an individual x and a set of individuals Q is defined as

Gdistðx;Q Þ ¼ min
y2Q

gdistðx; yÞ:

Then, if two individuals x and y are located with a grid distance m, it holds that

ðm� 1Þe 6 distðx; yÞ 6 ðmþ 1Þe:
Denote x0 to be the new candidate solution generated by a mutation on x. Then, 8m 2 Zþ, the infimum of the probability that
y is generated with gdistðx; yÞ ¼ m is

PmðeÞ P 1
2pr2

Z 1

ðd1=ee�1Þe
dy1

Z ðmþ1Þe=
ffiffi
2

p

me=
ffiffi
2

p exp �ðy1 � x1Þ2 þ y22
2r2

( )
dy2; ð5Þ

and the following theorem holds.
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Theorem 4. 8e > 0, in the expected runtime Oðr2l2

e e
2

r2l2 Þ, the (lþ 1) MOEA consisting of Algorithms 1, 3 and 4 obtains an e-

adaptive Pareto front of SCTOP when l <
2
ffiffi
2

p
e

 �
�1

3 þ 1.

Proof. when l <
2
ffiffi
2

p
e

 �
�1

3 þ 1; N�1
l�1 P 4. The evolving process of the population is as follows.

1. If N�1
l�1 is equal to an integer k P 4, the spreading process of the population can be divided into two procedures.

(a) Denote x� ¼ argminx2P½x� and y� ¼ argmaxx2P½x�. Then the images of x� and y� under the map G can move to the two
boundary grids of the Pareto front, respectively. Because a Pareto vector of SCTOP can jump from one grid to an adja-
cent grid with a probability greater than P1ðeÞ, this process will last for Oð l

P1ðeÞÞ iterations at expectation. For at most N
steps, Gðx�Þ and Gðy�Þ will move to the two boundary grids, and this duration will last for at most O lN

P1ðeÞ

� �
expected

generations. In what follows, we only consider the case that there are two vectors located in the two respective
boundary grids of the Pareto front.

(b) When min x–y
x; y 2 PðtÞ

gdistðx; yÞ < k
2

	 
� 1, there are two points x; y with gdistðx; yÞ ¼ k
2

	 
� 2. Moreover, if there are no

xP 2 PS n P with gdistðxP;PÞ ¼ k
2

	 

, it comes to the result that

max
x2P

min
y–x
y 2 P

gdistðx; yÞ < 2
k
2

� �
;

which cannot hold because ðl� 2Þ 
 ð2
 bk2cÞ þ bk2c � 2 is necessarily less than N � 1. Thus, the population can evolve into a
set of Pareto solutions with

min
x–y

x; y 2 PðtÞ

gdistðx; yÞ P k
2

� �
� 1;

and the result can be obtained as follows.

If there exists an xP 2 PS n P with GdistðxP;PÞ ¼ k
2

	 

, then it is generated with probability 1

l P k
2b cðeÞ, and xP will replace the

worst individual with Distðxw;P n fxgÞ < k
2

	 
� 1 in expected time Oð l
Pbk2c

ðeÞÞ. After at most l updates, the distance between

any two individuals is greater than or equal to k
2

	 
� 1, and the total expected runtime of this process is Oð l2

Pbk2c
ðeÞÞ.

(c) At the second step, the whole population evolves to an e-adaptive Pareto front. Denoting M ¼ minx;y2Pdistðx; yÞ, we
have M 6 k. Then, if there exists a Pareto vector xP R P with GdistðxP ;PÞ ¼ M þ 2, it is generated in expected time
Oð l

PMþ2ðeÞÞ. After at most l updates, the total expected time is Oð l2

PMþ2ðeÞÞ, and the minimum grid distance is greater than
or equal to M þ 2. Repeat this process if possible. Then, after at most a finite number of times, the minimum distance
is k, and an e-adaptive Pareto front is achieved in the expected runtime

O l2

PMþ2ðeÞ
� �

þO l2

PMþ4ðeÞ
� �

þ . . .þO l2

PkðeÞ
� �

¼ O l2

PkðeÞ
� �

:

2. If k < N�1
l�1 < kþ 1; k ¼ 4;5; . . ., a set of Pareto solutions P with minx;y2P;x–ygdistðx;yÞ ¼ k is generated in the expected runtime

Oð l2

PkðeÞÞ. Then, in the expected runtime Oð l2

P1ðeÞÞ, an e-adaptive Pareto front is obtained. That is to say, the expected runtime

in this case is Oð l2

PkðeÞÞ, too.

Thus, the (lþ 1) MOEA obtains an e-adaptive Pareto front of SCTOP in expected time Oð l2

PkðeÞÞ. Moreover, because

PkðeÞ ¼ 1
2pr2

Z 1

ðd1=ee�1Þe
dy1

Z ðkþ1Þe=
ffiffi
2

p

ke=
ffiffi
2

p exp �ðy1 � x1Þ2 þ y22
2r2

( )
dy2

P
1

2pr2

Z 1�ðd1=ee�1Þe

0
dy1

Z ðkþ1Þe=
ffiffi
2

p

ke=
ffiffi
2

p exp � y21 þ y22
2r2

� �
dy2

¼ 1
2pr2 ð1� ðd1=ee � 1ÞeÞ þ oðð1� ðd1=ee � 1ÞeÞ2Þ

� �
e�

1
2r2

ke=
ffiffi
2

pð Þ2 � effiffiffi
2

p þ o
effiffiffi
2

p
� �2

 ! !

¼ X
e
r2 e

� 2
r2l2

� �
;

the expected runtime of the (lþ 1) MOEA to obtain an e-Pareto front of SCTOP is Oðr2l2

e e
2

r2l2 Þ. h

74 Y. Chen, X. Zou / Information Sciences 262 (2014) 62–77



Author's personal copy

With respect to the approximation precision e, Theorem 4 shows that the expected runtime is of the order of O 1
e

� �
. Then,

when the approximation precision e is set small, it is hard to locate the points whose distance to the adaptive Pareto front are
less than e, which leads to a long expected runtime of the (lþ 1) MOEA. Regarding the mutation parameter r and the pop-

ulation size l, the expected runtime is Oðr2l2e
2

r2l2 Þ. Generally speaking, the expected runtime is of the order of Oðr2l2Þ,
because e

2
r2l2 is always less than one. However, r2l2e

2
r2l2 will reach its minimum value when rl ¼

ffiffiffi
2

p
, which means the

complexity order could be minimized when r and l are set to minimize jrl�
ffiffiffi
2

p
j.

4. Numerical results

In this section, we compare our results with those of the NSGA-II to demonstrate the efficiency of the proposed algorithm.
Because the NSGA-II generates an intermediate population of size l, we propose a variant of the (lþ 1) MOEA, termed
(lþ l) MOEA, which generates l candidates at each generation, and updates the population by running Algorithm 4 l
times. By attaching an archive to the framework of NSGA-II, the generated candidates update the population of NSGA-II
and the archive, respectively. In this way, at each generation the same candidates are generated for the two different updat-
ing strategies, which are the selection strategy of NSGA-II and the archive-updating strategy illustrated by Algorithm 4. For
the discrete MOPs, the candidates are generated by bitwise mutation, and for the continuous SCTOP, the algorithm generates
candidates by polynomial mutation [10].

Then, the comparison is performed by three MOPs for parameters listed in Table 1, and the Inverse General Distance (IGD)
[38] is employed to assess performances. For the polynomial DMOP LOTZ, the reference set is the collection of all Pareto
vectors, and for the Exponential DMOP LF 0

d and the SCTOP, adaptive Pareto fronts of the population size are taken as the ref-
erence sets.3 After fifty independent runs, the statistical results of IGD values are collected in Table 2.

The numerical results show that the proposed (lþ l) MOEA is competitive with the NSGA-II for the three test MOPs, ex-
cept that the (lþ l) MOEA standard deviation for SCTOP is slightly worse. The reason could be that the (lþ l) MOEA up-
dates the individuals of population one by one and the NSGA-II generates the next population by selecting l individuals from
the union of the present population and the intermediate population from a global perspective. Consequently, the results of
NSGA-II for simple CMOPs could be more stable, although the rest of the statistical results are all worse than those of the
(lþ l) MOEA.

5. Conclusions and future work

Based on the definitions of an adaptive Pareto front and its �-approximation, this paper presents a runtime analysis of an
estimator-based (lþ 1) MOEA for three MOPs. The theoretical results show that when the population size is less than the
total number of Pareto vectors, the (lþ 1) MOEA cannot achieve the expected polynomial runtime for the investigated
DMOPs. Thus, we should set the population size equal to the total number of LOTZ. For the exponential DMOP LF 0

d, the ex-
pected polynomial runtime can be obtained by maintaining the ratio of n

2 to l� 1 over a proper interval. For the given CMOP
with a continuous Pareto front, it is shown that the (lþ 1) MOEA can efficiently solve it by obtaining an e-adaptive Pareto

Table 1
Parameter settings for numerical experiments.

MOP Number of bits Population/archive size Generations

LOTZ 20 21 2000
LF 0d 36 19 1000
SCTOP — 20 1000

Table 2
Statistical comparisons of IGD values for two algorithms.

Function Algorithm Best Worst Mean St. dev.

LOTZ NSGA-II 0.2694 0.6734 0.4674 0.0854
(lþ l) MOEA 0 0.2694 0.1037 0.0612

LF 0d NSGA-II 1.0419 1.6787 1.3293 0.1457
(lþ l) MOEA 0.8939 0.9517 0.9204 0.0109

SCTOP NSGA-II 0.1410 0.3365 0.2413 0.0354
(lþ l) MOEA 0.0151 0.2395 0.1121 0.0683

3 Because the total number of Pareto vectors of LOTZ is nþ 1, we set the population/archive size to 21 to obtain all Pareto vectors of LOTZ. Moreover, an
adaptive Pareto front of size n

2 þ 1 can be uniformly distributed along the Pareto front, and accordingly, we set the population/archive size to 19 when the LF 0d is
considered.
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front in the expected polynomial runtime. The numerical results also validate that the (lþ l) MOEA, a variant of the pro-
posed (lþ 1) MOEA, can outperform NSGA-II for the three investigated MOPs.

Generally speaking, because the diversity estimator-based (lþ 1) MOEA can accommodate the Pareto front adaptively, it
can solve the three MOPs under investigation efficiently. However, the fitness function defined based on the true Pareto front
is unavailable when a MOP with unknown properties is encountered. Thus, from a practical point of view, an appropriate
fitness function is critical for designing an efficient (lþ 1) MOEA. Moreover, to improve its global exploration ability, cross-
over must be introduced when the (lþ 1) MOEA is utilized in practical applications. Furthermore, the (lþ 1) MOEA can also
be improved to generate k individuals at each generation. Thus, future work will focus on studies of the (lþ k) MOEAs,
including time-complexity analysis of (lþ k) MOEAs and the design of a high-performance MOEA inspired by the theoretical
results.
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