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In this paper, we investigate the complex dynamical behaviors of a biological network that is
derived from innate immune responses and that couples positive and negative feedback loops.
The stability conditions of the non-negative equilibrium points (EPs) of the system are obtained,
using the theory of dynamical systems, and we deduce that no more than three stable EPs exist
in this system. Through bifurcation analysis and numerical simulations, we find that the system
presents rich dynamical behaviors, such as monostability, bistability and oscillations. These
results reveal how positive and negative feedback cooperatively regulate the dynamical behavior
of the system.
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1. Introduction

Feedback is a universal mechanism for the appropri-
ate regulation of various cellular processes. More-
over, feedback has the potential to induce complex
dynamical behaviors such as multistability, hystere-
sis or oscillation, which have been investigated in
theory and experiments in recent years [Milo et al.,
2002; Ferrell, 2002; Shen-Orr et al., 2002; McMillen
et al., 2002; Pomerening et al., 2005; Iranfar et al.,
2006; Song et al., 2007; Pfeuty & Kaneko, 2009].
Therefore, it is very important to understand the
function of feedback for synthetic biology, the goal
of which is to design and synthesize biological net-
works that perform expected behaviors in a control-
lable manner [Elowitz & Leibler, 2000; Endy, 2005;
Alon, 2006; Andrianantoandro et al., 2006; Serrano,
2007; Haseloff & Ajioka, 2009].

It is convenient to analyze the properties of
biological networks according to their feedback
structure. While a single feedback loop has been
well studied, for example, positive feedback is the
necessary condition to produce bistability [Thomas,
1994; Snoussi, 1998; Gardner et al., 2000] and neg-
ative feedback can induce oscillations [Novák &
Tyson, 2008], a generalization of these results for
more complex networks is usually not explicit.
More complex systems, coupled with positive and
negative feedback loops, have been of interest to
the scientific community [Cinquin & Demongeot,
2002; Süel et al., 2006; Guantes & Poyatos, 2006;
Song et al., 2007; Novák & Tyson, 2008; Zhang
et al., 2010]. For example, a positive feedback
network coupled with a negative feedback loop
can produce a robust and adjustable oscillation
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Fig. 1. A schematic diagram of a specific regulatory net-
work with negative feedback coupled with one auto-feedback
and one positive feedback. A line with an arrow indicates
positive regulation, and a line with a short bar represents
negative regulation. A dashed line means that there are
multistep reactions.

[Stricker et al., 2008; Tian et al., 2009] or can obtain
widely adjustable frequency and near-constant
amplitude [Tsai et al., 2008].

However, the generation mechanisms for how
specific dynamics can be induced by feedback in
biological networks with interlinked positive and
negative feedback loops are still not very clear
except in a few studies [Qiu & Zhou, 2012]. There-
fore, this paper intends to investigate the complex
dynamical behaviors of a specific regulatory net-
work that comprises one negative feedback coupled
with one auto-feedback and one positive feedback
(Fig. 1), which is derived from the virus-triggered
innate immune regulatory network studied in a
recent study [Tan et al., 2012] based on mathemat-
ical modeling validated by biological experiments.
To reveal the mechanisms of generating complex
dynamics, we use dynamical theory and bifurcation
analysis to simulate various possible dynamical phe-
nomena that are induced by the coupled network.
These results provide new insights into mechanisms
of interlinked networks and designing artificial func-
tion modules in biological systems.

2. Mathematical Model

In the schematic diagram of the regulatory net-
work (Fig. 1), X activates Y , Y activates Z and
Z inhibits X; therefore, a negative feedback loop
is formed. X has an auto-feedback (or self-repli-
cation), and there exists a positive feedback by
multistep reactions from Y to Y . Based on the law
of mass action, we assume that the production rates
(k1, k2 and k3) and the degradation rates (d1, d2

and d3) of the three components are linearly pro-
portional to their concentrations. The processes of

Z inhibiting X and the positive feedback of Y are
represented using Hill functions. In this paradigm,
the dynamics of this network is determined by a
system of nonlinear ordinary differential equations
(ODEs) [Tan et al., 2012]:


dX(t)
dt

= k1X(t) · b1K
n1
1

Kn1
1 + Zn1(t)

− d1X(t)

dY (t)
dt

= k2X(t) +
b2Y

n2(t − τ)
Kn2

2 + Y n2(t − τ)
− d2Y (t)

dZ(t)
dt

= k3Y (t) − d3Z(t),

(1)

where X(t), Y (t) and Z(t) are the concentrations
of three components, X, Y and Z, respectively. K1

and K2 are the inhibition and activation coefficients
of Z and Y , respectively; b1 and b2 are the maximal
production rates and n1 and n2 are the Hill coeffi-
cients in two Hill functions, respectively. The multi-
step reaction processes in the positive feedback of Y
are omitted and are substituted by a time delay τ .

For brevity and clarity, we let τ = 0 and non-
dimensionalize system (1). Time is scaled relative
to the degradation rate (d3) of Z. We make the
following substitutions and assume that all of the
model parameters are greater than 0 for studying
the actual biological significance.

x(t) =
k2k3

K1d2
3

X(t), y(t) =
k3

K1d3
Y (t),

z(t) =
1

K1
Z(t), t = d3t, K =

k3

K1d3
K2,

α1 =
k1b1

d3
, α2 =

d1

d3
, α3 =

k3b2

K1d2
3

,

α4 =
d2

d3
, σ1 =

α1

α2
=

k1b1

d1
, σ2 =

α3

α4
.

Using t instead of t for notational convenience,
we obtain the nondimensional system of equations:



dx(t)
dt

=
σ1α2x(t)
1 + zn1(t)

− α2x(t)

dy(t)
dt

= x(t) +
σ2α4y

n2(t)
Kn2 + yn2(t)

− α4y(t)

dz(t)
dt

= y(t) − z(t),

(2)
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where x(t), y(t) and z(t) are the dimensionless
concentrations of the components X, Y and Z,
respectively. System (2) is determined by five
dimensionless parameters σ1, σ2, α2, α4 and K
and the two Hill coefficients, n1 and n2. The vari-
ables α2 and α4 are called the relative degradation
ratios. K is the relative activation coefficient of Y .
Additionally, σ1 can be viewed as the relative ratio
between the auto-feedback and the negative feed-
back strengths, i.e. the auto-negative ratio, and σ2

can be viewed as the relative strength of the positive
feedback loop.

Considering the biological significance, we
assume that all of the parameters are greater than 0
and that n1 and n2 take on positive integer values.
From system (2), we can see that σ1 and σ2 are two
important parameters that are related to the posi-
tive and negative feedback. Therefore, most of the
analysis and simulations in the following sections
are based on the two parameters.

3. Theoretical Analysis

We primarily use the basic stability principle in a
dynamical system [Hale, 1977] and Routh–Hurwitz
criterion [Dorf & Bishop, 2001] to analyze the sta-
bility conditions of the equilibrium points (EPs) of
system (2). At the same time, using the methods
in [Kuznetsov, 1998; Liu & Liu, 2012], we discuss
some typical bifurcations for system (2).

3.1. Case 1 : Hill coefficient n2 = 1

When n2 = 1, system (2) can be simplified as
follows



dx(t)
dt

=
σ1α2x(t)
1 + zn1(t)

− α2x(t)

dy(t)
dt

= x(t) +
σ2α4y(t)
K + y(t)

− α4y(t)

dz(t)
dt

= y(t) − z(t).

(3)

Then we easily obtain the three non-negative EPs of
system (3) (the second column in Table 1) and infer
the following results about the stability conditions
for the system in (3):

Theorem 1. There exist three non-negative EPs
for system (3), and only one EP is locally asymp-
totically stable under any one of the follow-
ing conditions (detailed proofs are presented in

Appendix A):

(1) If σ1 < 1 and σ2 < K, then system (3) is locally
asymptotically stable at the first EP En1,1

1 .

(2) If σ2 > max{K,K + (σ1 − 1)
1

n1 }, then sys-
tem (3) is locally asymptotically stable at the
second EP En1,1

2 .

(3) If σ1 > 1, σ2 < K +(σ1 − 1)
1

n1 and α2 < Cn1,1,
then system (3) is locally asymptotically stable
at the third EP En1,1

3 , where

Cn1,1 =
σ1

n1(σ1 − 1)

·


1 + α4 − Kσ2α4[

K + (σ1 − 1)
1

n1

]2



·
K + (σ1 − 1)

1
n1 − Kσ2

K + (σ1 − 1)
1

n1

K + (σ1 − 1)
1

n1 − σ2

.

We summarize the stability conditions for sys-
tem (3) at the EPs in Table 1 (σ1, σ2, α2, α4, and K
are greater than 0) when n2 = 1.

To easily observe the stable regions, a theoret-
ical diagram of stability about parameters σ1 and
σ2 is depicted in Fig. 2 when n2 = 1. The first
quadrant in the plane σ1–σ2 is divided into three
regions, A, B and C, by the lines σ1 = 1 and
σ2 = K and the curve σ2 = K + (σ1 − 1)

1
n1 , and

the quasi-parabolic curve in Fig. 2(a) degenerates
into a straight line in Fig. 2(b) when n1 = 1; how-
ever, the basic form in Fig. 2(b) corresponds to
Fig. 2(a). In each stable region, there is only one
stable EP, and the perturbation of parameters n1,
K, α2 and α4 will not change the basic structure
of the diagram, which indicates that system (3) is
robust about these parameters. However, because of
different positive and negative feedback strengths,
there are different biological behaviors in different
regions. When the relative ratio σ1 and the rela-
tive strength of the positive feedback σ2 are small
(σ1 < 1 and σ2 < K), then three components will
tend to zero when the initial point is near the ori-
gin, which corresponds to region A (Table 1). When
σ1 and σ2 satisfy other conditions, system (3) can
reach the other two equilibrium states (region B or
region C in Fig. 2 and Table 1).

From the proof of Theorem 1, we can observe
that the EPs En1,1

1 and En1,1
3 collide, forming an
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Table 1. The stability conditions at the non-negative EPs (n2 = 1).

Domain Additional
EPs (x, y, z) Stability Conditions in Fig. 2 Conditions

En1,1
1 (0, 0, 0) σ1 < 1, σ2 < K A —

En1,1
2 (0, σ2 − K, σ2 − K) σ2 > K, σ2 > K + (σ1 − 1)

1
n1 (σ1 ≥ 1) B —

En1,1
3

„
α4(σ1 − 1)

1
n1

»
1 − σ2

K + (σ1 − 1)
1

n1

–
, σ1 > 1, σ2 < K + (σ1 − 1)

1
n1 C α2 < Cn1,1

(σ1 − 1)
1

n1 , (σ1 − 1)
1

n1

«

equilibrium (the origin) at σ1 = 1 when σ2 < K.
The exchange of the stability of En1,1

1 and En1,1
3

occurs as σ1 passes through 1, i.e. En1,1
1 is stable

and En1,1
3 is unstable when σ1 < 1; however, En1,1

1

is unstable and En1,1
3 is stable when σ1 > 1, which

indicates that a codimension-one transcritical bifur-
cation (TB) at the origin takes place. Performing
the same analysis, we have a similar codimension-
one bifurcation about parameter σ1 at En1,1

2 in the
case σ1 = 1 + (σ2 − K)n1 and σ2 > K or param-
eter σ2 [Theorems 2(1) and 2(2)]. When σ1 = 1
and σ2 = K, the three equilibria En1,1

1 , En1,1
2 and

En1,1
3 collide at the origin and the linearized sys-

tem of (3) has two eigenvalues λ1 = λ2 = 0 and a
negative eigenvalue λ3 = −1 at the origin, which
means that the origin is a codimension-two bifurca-
tion (Bogdanov–Takens bifurcation (BTB)) point in
the case where σ1 = 1 and σ2 = K [Theorem 2(3)].
To investigate the bifurcation of the limit cycles
in system (3) about the parameters σ1 or σ2, we

introduce the following lemma:

Lemma 1. If α2 is viewed as a bifurcation
parameter, then a Hopf bifurcation occurs as α2

passes through Cn1,n2 for the system in (2) (detailed
proofs are presented in Appendix B).

Let α2 = α2(σ1, σ2) = Cn1,n2. Because α2(σ1,
σ2) �= const ., there exists a σHB

1 or σHB
2 that satis-

fies dα2
dσ1

|σ1=σHB
1

�= 0 or dα2
dσ2

|σ2=σHB
2

�= 0, respectively,
then the transversality condition

Re
(

dλ1

dσ1

)∣∣∣∣
σ1=σHB

1

= Re

(
dλ1

dα2

∣∣∣∣
α2=Cn1,n2

· dα2

dσ1

∣∣∣∣
σ1=σHB

1

)

=
dα2

dσ1

∣∣∣∣
σ1=σHB

1

· Re

(
dλ1

dα2

∣∣∣∣
α2=Cn1,n2

)
�= 0

(a) (b)

Fig. 2. Stable regions when n2 = 1. The first quadrant in the plane σ1–σ2 is divided into three regions, A, B and C, by the

lines σ1 = 1 and σ2 = K and the curve σ2 = K + (σ1 − 1)
1

n1 . (a) n1 > 1 and (b) n1 = 1. The quasi-parabolic curve in (a)
degenerates into a straight line, but the basic form in (b) corresponds to (a).
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or

Re
(

dλ1

dσ2

)∣∣∣∣
σ2=σHB

2

= Re

(
dλ1

dα2

∣∣∣∣
α2=Cn1,n2

· dα2

dσ2

∣∣∣∣
σ2=σHB

2

)

=
dα2

dσ2

∣∣∣∣
σ2=σHB

2

· Re
(

dλ1

dα2

∣∣∣∣
α2=Cn1,n2

)
�= 0

is satisfied; in other words, a Hopf bifurcation
occurs as σ1 or σ2 passes through σHB

1 or σHB
2 for

system (3) [and for system (2)] if σ1 or σ2 is viewed
as a bifurcation parameter [Theorem 2(4)].

Thus, we have the following bifurcation results
(Theorem 2 and Table 2) when n2 = 1:

Theorem 2. Assume that σ1 or σ2 are bifurcation
parameters when the other parameters are fixed, and
we have

(1) The system in (3) goes through a transcriti-
cal bifurcation (TB) at the origin in the case
where σ1 = 1 and σ2 < K, or at EP (0, (σ1 −
1)

1
n1 , (σ1 − 1)

1
n1 ) in the case where σ1 = 1 +

(σ2 − K)n1 and σ2 > K.
(2) The system in (3) goes through a transcriti-

cal bifurcation (TB) at the origin in the case
where σ2 = K and σ1 < 1, or at EP (0, (σ1 −
1)

1
n1 , (σ1 − 1)

1
n1 ) in the case where σ2 = K +

(σ1 − 1)
1

n1 and σ1 > 1.
(3) The system in (3) goes through a codimension-

two Bogdanov–Takens bifurcation (BTB) at the
origin in the case where σ1 = 1 and σ2 = K.

(4) The system in (3) goes through a Hopf bifurca-
tion (HB) at En1,1

3 as σ1 passes through some

σHB
1 or as σ2 passes through some σHB

2 , where
σHB

1 or σHB
2 satisfies α2(σHB

1 , σ2) = Cn1,1 or
α2(σ1, σ

HB
2 ) = Cn1,1, respectively.

The above bifurcation analysis shows that
the variety of auto-feedback or positive feedback
strength will cause dramatic changes in the behav-
iors of the system.

3.2. Case 2: Hill coefficient n2 > 1

If the Hill coefficient n2 > 1 in system (2), then we
easily obtain four non-negative EPs of system (2)
(the second column in Table 3).

We have the following results on the stability
conditions for system (2) when n2 > 1:

Theorem 3. System (2) has three non-negative
stable EPs under certain conditions and an
unstable EP (detailed proofs are presented in
Appendix C ):

(1) If σ1 < 1, then system (2) is locally asymptoti-
cally stable at the first EP En1,n2

1 .
(2) The second EP En1,n2

21 is always unstable.
(3) If

σ2 >
n2K

(n2 − 1)
n2−1

n2

and

σ2 >
Kn2 + (σ1 − 1)

n2
n1

(σ1 − 1)
n2−1

n1

(σ1 ≥ 1 + (n2 − 1)
n2
n2 Kn1),

then system (2) is locally asymptotically stable
at the third EP En1,n2

22 .

Table 2. Bifurcation values and types (n2 = 1).

Parameters Conditions Values Type

σ2 < K 1 TB

σ1 σ2 > K 1 + (σ2 − K)n1 TB

α2(σ
HB
1 , σ2) = Cn1,1 σHB

1 HB

σ1 < 1 K TB Codimen one

σ2 σ1 > 1 K + (σ1 − 1)
1

n1 TB

α2(σ1, σHB
2 ) = Cn1,1 σHB

2 HB

σ1 & σ2 σ1 = 1 & σ2 = K BTB Codimen two
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Table 3. The stability conditions at the non-negative EPs (n2 > 1).

Domain Additional
EPs (x, y, z) Stability Conditions in Fig. 3 Conditions

En1,n2
1 (0, 0, 0) σ1 < 1 A B —

E
n1,n2
21 (0, y

n1,n2
21 , z

n1,n2
21 (= y

n1,n2
21 )) — — —

En1,n2
22 (0, yn1,n2

22 , zn1,n2
22 (= yn1,n2

22 )) σ2 >
n2K

(n2 − 1)
n2−1

n2

, B C D —

σ2 >
Kn2 + (σ1 − 1)

n2
n1

(σ1 − 1)
n2−1

n1

(σ1 ≥ 1 + (n2 − 1)
n1
n2 Kn1)

En1,n2
3

 
α4

"
(σ1 − 1)

1
n1 − σ2(σ1 − 1)

n2
n1

Kn2 + (σ1 − 1)
n2
n1

#
, σ1 > 1, C F α2 < Cn1,n2

(σ1 − 1)
1

n1 , (σ1 − 1)
1

n1

!
σ2 < min

8<
:Kn2 + (σ1 − 1)

n2
n1

(σ1 − 1)
n2−1

n1

,

h
Kn2 + (σ1 − 1)

n2
n1

i2
n2Kn2(σ1 − 1)

n2−1
n1

9>=
>;

(4) If

σ1 > 1, σ2 < min




Kn2 + (σ1 − 1)
n2
n1

(σ1 − 1)
n2−1

n1

,

[
Kn2 + (σ1 − 1)

n2
n1

]2
n2Kn2(σ1 − 1)

n2−1
n1




and α2 < Cn1,n2, then system (2) is locally asymptotically stable at the fourth EP En1,n2
3 , where

Cn1,n2 =


1 + α4 − n2σ2α4K

n2(σ1 − 1)
n2−1

n1[
Kn2 + (σ1 − 1)

n2
n1

]2

 ·


1 − n2σ2K

n2(σ1 − 1)
n2−1

n1[
Kn2 + (σ1 − 1)

n2
n1

]2



n1(σ1 − 1)
[
Kn2 + (σ1 − 1)

n2
n1 − σ2(σ1 − 1)

n2−1
n1

]
σ1

[
Kn2 + (σ1 − 1)

n2
n1

]
.

Similar to the above discussions, we can sum-
marize the stability conditions for system (2) at
EPs, as given in Table 3 (σ1, σ2, α2, α4, and K are
greater than 0) when n2 > 1.

From the stability diagram (Fig. 3) and Table 3
we can observe that when n2 > 1, system (2)
exhibits bistability phenomena in region B (En1,n2

1
and En1,n2

22 ) and C (En1,n2
22 and En1,n2

3 ), which does
not exist in the case of n2 = 1.

Similar to the case of n2 = 1, from the proof
of Theorem 3 we can observe that the EPs En1,n2

1
and En1,n2

3 collide, forming an equilibrium (the

origin) at σ1 = 1. The exchange of the stability
of En1,n2

1 and En1,n2
3 occurs as σ1 passes through

1, i.e. En1,n2
1 is stable and En1,n2

3 is unstable when
σ1 < 1; however, En1,n2

1 is unstable and En1,n2
3 is

stable when σ1 > 1, which indicates that system (2)
goes through a codimension-one transcritical bifur-
cation (TB) at the origin in the case of σ1 = 1.

When σ1 > 1+(n2−1)
n1
n2 Kn1 and σ2 > n2K

(n2−1)
n2−1

n2

,

the EPs En1,n2
22 and En1,n2

3 will collide, forming an

1350180-6
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Fig. 3. Stable regions when n2 > 1. The first quadrant
in the plane σ1–σ1 is divided into six regions, A–F, by
the lines σ1 = 1 and σ2 = n2K

(n2−1)
n2−1

n2

, and the curves

σ2 =
Kn2+(σ1−1)

n2
n1

(σ1−1)
n2−1

n1

and σ2 =
[Kn2+(σ1−1)

n2
n1 ]2

n2Kn2(σ1−1)
n2−1

n1

.

equilibrium (0, (σ1−1)
1

n1 , (σ1−1)
1

n1 ) at σTB
1 , where

σTB
1 satisfies σ2 = Kn2+(σTB

1 −1)
n2
n1

(σTB
1 −1)

n2−1
n1

. The exchange

of the stability of En1,n2
22 and En1,n2

3 occurs as σ1

passes through σTB
1 , i.e. En1,n2

22 is stable and En1,n2
3

is unstable when σ1 < σTB
1 ; however, En1,n2

22 is
unstable and En1,n2

3 is stable when σ1 > σTB
1 ,

which indicates that system (2) also undergoes a
codimension-one transcritical bifurcation (TB) at

EP (0, (σ1 − 1)
1

n1 , (σ1 − 1)
1

n1 ) in case σ1 = σTB
1

when σ2 > n2K

(n2−1)
n2−1

n2

[Theorem 4(1)].

For parameter σ2, the stable equilibrium point
En1,n2

22 and unstable equilibrium point En1,n2
21 when

σ2 > n2K

(n2−1)
n2−1

n2

and σ1 < 1 + (n2 − 1)
n1
n2 Kn1

will collide together at σ2 = n2K

(n2−1)
n2−1

n2

, forming

another codimension one saddle-node bifurcation
(SNB). When σ1 > 1 + (n2 − 1)

n1
n2 Kn1, EPs En1,n2

22

and En1,n2
3 will collide, forming an equilibrium

(0, (σ1 − 1)
1

n1 , (σ1 − 1)
1

n1 ) at σTB
2 = Kn2+(σ1−1)

n2
n1

(σ1−1)
n2−1

n1

.

The exchange of the stability of En1,n2
22 and En1,n2

3

occurs as σ2 passes through σTB
2 , i.e. En1,n2

22 is sta-
ble and En1,n2

3 is unstable when σ2 > σTB
2 ; however,

En1,n2
22 is unstable and En1,n2

3 is stable when σ2 <

σTB
2 , which indicates that system (2) also undergoes

a codimension-one transcritical bifurcation (TB) at

EP (0, (σ1 − 1)
1

n1 , (σ1 − 1)
1

n1 ) in the case where

σ2 = Kn2+(σ1−1)
n2
n1

(σ1−1)
n2−1

n1

when σ1 > 1 + (n2 − 1)
n1
n2 Kn1

[Theorem 4(2)].
The bifurcation of the limit cycles in system

(2) about parameter σ1 or σ2 is similar to The-
orem 2(4), and we have Theorem 4(3). Thus, we
have the following bifurcation results (Theorem 4
and Table 4) when n2 > 1:

Theorem 4. Assume that σ1 or σ2 are bifurcation
parameters when the other parameters are fixed, and
we have

(1) The system in (2) goes through a transcritical
bifurcation (TB) at the origin in the case where

σ1 = 1, or at EP (0, (σ1−1)
1

n1 , (σ1−1)
1

n1 ) as σ1

Table 4. Bifurcation values and types (n2 > 1).

Parameters Conditions Values Type

σ1 1 TB

σ2 =
Kn2 + (σTB

1 − 1)
n2
n1

(σTB
1 − 1)

n2−1
n1

σTB
1 TB

α2(σHB
1 , σ2) = Cn1,n2 σHB

1 HB

Codimen one

σ2 σ1 < 1 + (n2 − 1)
n1
n2 Kn1 n2K

(n2 − 1)
n2−1

n2

SNB

σ1 > 1 + (n2 − 1)
n1
n2 Kn1 Kn2 + (σ1 − 1)

n2
n1

(σ1 − 1)
n2−1

n1

TB

α2(σ1, σHB
2 ) = Cn1,n2 σHB

2 HB

1350180-7



November 29, 2013 11:59 WSPC/S0218-1274 1350180

J. Tan & X. Zou

passes through σTB
1 , where σTB

1 satisfies σ2 =

Kn2+(σTB
1 −1)

n2
n1

(σTB
1 −1)

n2−1
n1

and σTB
1 > 1 + (n2 − 1)

n1
n2 Kn1.

(2) The system in (2) goes through a transcriti-

cal bifurcation (TB) at EP (0, (σ1 − 1)
1

n1 , (σ1 −
1)

1
n1 ) as σ2 passes through Kn2+(σ1−1)

n2
n1

(σ1−1)
n2−1

n1

when

σ1 > 1 + (n2 − 1)
n1
n2 K, or the system in

(2) goes through saddle-node bifurcation (SNB)
at En1,n2

22 (= En1,n2
21 ) as σ2 passes through

n2K

(n2−1)
n2−1

n2

when σ1 < 1 + (n2 − 1)
n1
n2 Kn1.

(3) The system in (2) goes through a Hopf bifurca-
tion (HB) at En1,n2

3 as σ1 passes through some
σHB

1 or σ2 passes through some σHB
2 , where σHB

1

or σHB
2 satisfies with α2(σHB

1 , σ2) = Cn1,n2 or
α2(σ1, σ

HB
2 ) = Cn1,n2 , respectively.

4. Numerical Results and
Discussions

4.1. Global bifurcation analysis
with two parameters

To understand the influences of feedback on the
dynamical behaviors of the system (2), we depict
a two-parameter bifurcation diagram in the plane
σ1–σ2 using AUTO software [Ermentrout, 2002]
(see Fig. 4). The first quadrant is divided into a
number of regions, the monostable region (M), the
bistable region (B) or the oscillatory region (O).
When n2 = 1, the system exhibits only monostable
or oscillatory behaviors, i.e. the first quadrant can
simply be divided into two regions: a monostable
and an oscillatory region regardless of n1 = 1 or
n1 = 2 [see Figs. 4(a1) and 4(a2)]. When n2 = 2, the
system performs richer dynamical behaviors. There
are not only monostable and oscillatory cases but
also bistable cases [Figs. 4(b1) and 4(b2)].

The monostable region can further be divided
into three subregions by the transcritical bifurcation
points (TB), the stable region M1 for E1, the stable
region M2 for E2 (or E22) and the stable region M3
for E3, regardless of n2 = 1 or n2 = 2. Similarly, the
bistable region can be divided into two subregions
by transcritical points (TB), the bistable region B1
for E1 and E22 and the bistable region B2 for E22

and E3 when n2 = 2. These criteria indicate that
the synergy among Y is the necessary condition to

trigger bistability. Obviously, B2 is much narrower
than B1 in Figs. 4(b1) and 4(b2), and oscillation at
different values of n2 also exhibits different forms.
When n2 = 1, the supercritical Hopf bifurcation
points form an oscillating region (O) [see the lower
right region in Figs. 4(a1) and 4(a2)]. Similarly,
when n2 = 2, the supercritical Hopf bifurcation
points can also enclose an oscillating region in the
lower right in Figs. 4(b1) and 4(b2). There are two
disconnected oscillating subregions when n1 = 1
[Fig. 4(b1)], but these two subregions merge into
a larger oscillating region together when n1 = 2
[Fig. 4(b2)]. When n2 = 2, the system exhibits
a supercritical Hopf bifurcation phenomenon and
a subcritical Hopf bifurcation phenomenon, which
show richer dynamical behaviors.

As in the discussion above, the system performs
different dynamical behaviors under different cases
with a synergistic effect (n2 = 2) or no synergy
(n2 = 1) among Y . When n2 = 2, i.e. there is syn-
ergy, the system behaviors are richer (monostability,
bistability or oscillation), which coincides with the
real-life phenomena, such as rehabilitation from the
viral infection state, or the carrier or periodic state
of an illness. Another example is the processes of cell
life movement that present differentiation, apopto-
sis, replication and other phenomena. We are also
concerned about the network’s dynamical behaviors
when n1 and n2 are greater than 2. From Fig. 5, we
can see that various values of n1 and n2 do not
have a large influence on the network’s dynamic
behaviors. Only the size of the oscillation regions
is slightly larger with an increase in n1. Therefore,
in the following discussion of considering synergy
in negative and positive feedback, n1 and n2 are set
to be 2.

We also investigate the effect of the other
parameters, K, α2 or α4, on network’s dynamical
behaviors. As shown in Figs. 6–8 with different Hill
coefficients, we observe that the variants of these
parameters do not change the structure of the global
bifurcation diagram in Fig. 4 and only slightly
change the boundary of the divided regions, which
reflects two different trends in the plane σ1–σ2 in
Fig. 4. An increase in K expands the oscillating
region, while it reduces the monostable or bistable
regions [Figs. 6(a), 7(a) and 8(a)]. The reason is that
the increase in K decreases Y in the positive feed-
back loop and, accordingly, expands the oscillating
region. An increase in α2 has almost no impact
on the network’s dynamic behaviors [Figs. 6(b),
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(a1) (a2)

(b1) (b2)

Fig. 4. Global bifurcation diagrams about σ1 and σ2. The abbreviations and symbols are as follows: M , a monostable region
that is divided into three subregions: M1, M2 and M3; B, a bistable region that is divided into two subregions: B1 and B2; O,
an oscillation region; TB, a transcritical bifurcation point; Sub-H, a subcritical Hopf bifurcation point; Sup-H, a supercritical
Hopf bifurcation point; SNB, a saddle-node bifurcation point; and BTB, a Bogdanov–Takens bifurcation point. The other
parameters are: K = 2, α2 = 6 and α4 = 4 in addition to the value of n1 and n2 marked in the diagram.

7(b) and 8(b)]. When α4 is increased, the oscilla-
tion region is decreased, while the monostable or
bistable regions are slightly increased [Figs. 6(c),
7(c) and 8(c)]. These results indicate that the net-
work exhibits strong robustness for these parame-
ter perturbations. Therefore, we mainly analyze the
effect of two parameters, σ1 and σ2, on the net-
work’s dynamical behaviors while we fix the other
three parameters to K = 2, α2 = 6 and α4 = 4.

4.2. Local bifurcation analysis

4.2.1. Monostability and bistability

During a certain period, the process of life always
shows itself to be in a balance, i.e. a steady-state,

comprising monostability and bistability (or multi-
stability). A bistable property of a regulatory net-
work allows an organism to better adapt to changes
in the surrounding environment. Therefore, it is
necessary to investigate the mechanisms for the pro-
duction of monostability or bistability. Here, we
investigate how the monostable and bistable states
are induced by feedback.

First, from the global bifurcation graph in
Fig. 4(a), without the synergy among Y (n2 = 1),
strong auto-feedback strength (σ1 takes large value)
easily induces oscillation. No matter how large the
auto-feedback strength, however, the system can
inhibit the oscillation by increasing Y ’s positive
feedback strength (σ2), obtaining a stable state
(entering into the subegion M3). With an increase

1350180-9
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(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

(c1) (c2) (c3) (c4)

(d1) (d2) (d3) (d4)

Fig. 5. Influence on the system behaviors with the synergistic effect (Hill coefficients). The abbreviations and symbols are
the same as those in Fig. 4. The other parameters are K = 2, α2 = 6 and α4 = 4 in addition to the values of n1 and n2

marked in the diagram.

in σ2, the system will also enter the subregion M2,
making X = 0. With a weak auto-feedback strength
(σ1), of course, the positive regulation strength
(σ2) can also acquire a small value to stabilize the
system, reducing the oscillation area. Additionally,
when the auto-feedback strength (σ1) is less than
a certain threshold [the value is approximately 6
in Fig. 4(a1) and 1.6 in Fig. 4(a2)], the system is
always in a stable state. It is noted that the bista-
bility phenomenon is not observed when n2 = 1,
which indicates that a positive feedback loop is the
only necessary condition to generate bistability and

other conditions that must be satisfied to fully guar-
antee the bistability of a specific system.

Second, when n2 = 2, the large auto-negative
ratio (σ1) easily induces an oscillation and the
system can be stabilized by the suitable rela-
tive strength of the positive feedback (σ2), which
causes it to enter a stable subregion of M3 or M2
[Fig. 4(b)]. However, the system now exhibits bista-
bility under the conditions of a small auto-negative
ratio (σ1) and a large relative strength of the posi-
tive feedback (σ2) [Fig. 4(b1) or 4(b2)]. Because the
auto-negative ratio is smaller (σ1 < 1), the system
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(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

(c1) (c2) (c3) (c4)

Fig. 6. The system dynamical behaviors about the perturbation of parameter K, α2 or α4 when n1 = 2 and n2 = 1. K = 2,
α2 = 6 and α4 = 4, except for the values marked in the diagram. The abbreviations and symbols are the same as those
in Fig. 4.

enters the subregion B1. With an increase in the
auto-negative ratio (σ1 > 1), the system enters the
subregion B2 [Figs. 4(b1) and 4(b2)]. Figure 4 shows
that B2 is narrower than B1. At the same time, it
can be observed that the size of the bistable region
can be adjusted by the relative strength of the pos-
itive feedback when the auto-negative ratio is fixed
(the size is actually decreasing as σ2 is increasing,
but not significantly).

Third, we further analyze the effect of feed-
back on monostable and bistable states. We first
fixed the relative strength of the positive feedback
(σ2): it is obvious that the weak relative strength
of the positive feedback [σ2 ≤ 4, Figs. 4(b1)
and 4(b2)] will not cause the system to have bistable

performance. To observe bistable phenomena, we
set σ2 = 4.1. Therefore, the auto-negative ratio
will determine whether the system is monostable
or bistable (Fig. 9). When the auto-negative ratio
is less than 1.314 [Fig. 9(a1)] or less than 1.14
[Fig. 9(b1)], the system exhibits rich bistable phe-
nomena. When the auto-negative ratio is within
domain (0, 1), e.g. σ1 = 0.5 [Figs. 9(a2) and 9(b2)],
the system has two stable EPs, E1 and E22. At
this time, although the system can switch between
the two equilibrium states, X is equal to 0. If
σ1 = 1.08 [Figs. 9(a3) and 9(b3)], the system
will switch between two stable equilibrium states,
E22 and E3, exhibiting bistability. The stability of
the origin E1 is inherited by the EP E3. Because

1350180-11



November 29, 2013 11:59 WSPC/S0218-1274 1350180

J. Tan & X. Zou

(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

(c1) (c2) (c3) (c4)

Fig. 7. The system dynamical behaviors about the perturbation of parameter K, α2 or α4 when n1 = 2 and n2 = 2. K = 2,
α2 = 6 and α4 = 4, except for the values marked in the diagram. The abbreviations and symbols are the same as those
in Fig. 4.

the auto-negative ratio increases continuously, the
system will enter the monostable subregion M2,
showing no bistable phenomenon [Fig. 4(b)].

Specifically, as the auto-negative ratio (σ1)
increases, the system will have a supercritical Hopf
bifurcation when n1 = 2 and n2 = 2 [Fig. 9(b1)],
showing a bistability phenomenon that is not easily
observed [σ1 = 1.12 in Fig. 10(b)], a stable equi-
librium state and a stable limit cycle (the second
type of bistability). However, this area is so small
that only the second bistable type can be observed
when the σ1 belongs to a narrow interval (1.11,
1.14) [Fig. 9(b1)]. Therefore, we do not specifically
describe the region in Fig. 4. As the auto-negative
ratio increases when n1 = 1 and n2 = 2 [Fig. 9(a1)],
the system transits from subregion B2 to subregion

M2 and can have a subcritical Hopf bifurcation that
produces an unstable limit cycle [Fig. 10(a)]. Sim-
ilarly, the region is also very small and the phe-
nomenon can be observed only when the σ1 is in
the interval (1.29, 1.314) [Fig. 9(a1)].

Finally, we consider the effect of the relative
strength of the positive feedback (σ2) on the bista-
bility by fixing the auto-negative ratio (σ1). From
the above analysis, only when n2 = 2 and the
auto-negative ratio is small (such as σ1 < 1.314
when n2 = 1 or σ1 < 1.14 when n2 = 2), the
bistable phenomenon can be observed if the relative
strength of the positive feedback σ2 is greater than
4. With an increase in the relative strength of the
positive feedback, the whole bistable region slowly
becomes smaller, while the bistable subregion B2
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(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

(c1) (c2) (c3) (c4)

Fig. 8. The system dynamical behaviors about the perturbation of parameters K, α2 or α4 when n1 = 1 and n2 = 2. K = 2,
α2 = 6 and α4 = 4, except for the values marked in the diagram. The abbreviations and symbols are the same as those
in Fig. 4.

slowly becomes smaller, the bistable subregion B1
remains unchanged (σ1 < 1) [Figs. 4(b1) and 4(b2)].

4.2.2. Oscillations

An oscillation is a basic and important prop-
erty that is exhibited by many regulatory systems
and is a common phenomenon in life processes,
for example, the circadian rhythm and the cell
cycle. Therefore, it is very important to master the
oscillation-generating mechanism for understanding
biological regulatory networks. We investigate how
the cooperation of positive and negative feedback
induces an oscillation. For the sake of convenience,
we change only the strength of the two feedbacks
and discuss their effect on the oscillation interval,

period and amplitude when the other parameters
are unchanged.

First, we analyze the impact of parameter σ1

by fixing the relative positive feedback strength σ2

in the two cases, i.e. one strong strength [σ2 = 3.8
in Figs. 11(a1) and 11(a2)] and one weak strength
[σ2 = 0.8 in Figs. 11(b1) and 11(b2)]. When σ2 is
large and σ2 = 3.8, the system will have a subcrit-
ical Hopf bifurcation at σ1 ≈ 1.32 and σ1 ≈ 3.2
[Figs. 11(a1) and 12] or σ1 ≈ 1.12 [Fig. 11(a2)],
due to σ1 gradually being increased, which results
in an unstable limit cycle (this region is very small
and difficult to observe) in a stable subregion M3
in Fig. 4(b) regardless of whether n1 = 1 or 2.
Then, the system quickly enters the stable limit
cycle region, exhibiting a periodic oscillation, and
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Fig. 9. Bifurcation diagrams about σ1 and bistable phase diagrams about x–y. (a1) is the bifurcation diagram about σ1 when
n1 = 1. (a2) and (a3) are (a1)’s phase diagrams about x–y when σ1 = 0.5 or σ1 = 1.08, respectively. (b1) is the bifurcation
diagram about σ1 when n1 = 2. (b2) and (b3) are (b1)’s phase diagrams about x–y when σ1 = 0.5 or σ1 = 1.08, respec-
tively. Blue hollow circles and green solid circles in bifurcation diagrams represent the maximum and minimum amplitudes of
unstable or stable limit cycles, respectively. Red solid lines and black dashed lines in bifurcation diagrams indicate stable or
unstable equilibrium points, respectively. Red solid lines and blue solid lines in phase diagrams are x-nullcline or y-nullcline,
respectively. Their intersections are equilibrium points, of which solid or hollow circles are stable or unstable, respectively. E1,
E21, E22 and E3 are all non-negative equilibrium points discussed in Theorem 2 and NE is the negative equilibrium point
which is not considered in this study. Black solid curves with arrows in phase diagrams refer to sample trajectories. The other
abbreviations and symbols are the same as in Fig. 4. The other parameters are σ2 = 4.1, K = 2, α2 = 6 and α4 = 4 in
addition to the value of σ1, n1 and n2 marked in the diagrams.

re-enters the stable region M3 when σ1 ≈ 3.42
[in Fig. 11(a1)] or σ1 ≈ 10.86 [in Fig. 11(a2)].
From Fig. 12, if σ1 belongs to the interval (3.2,
3.42), the system has two limit cycles simultane-
ously, and they tend to coalesce at σ1 ≈ 3.42, form-
ing a saddle-node bifurcation on a periodic orbit
(SN-PO). However, with the continued increase in
σ1, the system will again have a Hopf bifurcation
[supercritical bifurcation at σ1 ≈ 28.3 in Fig. 11(a1)
or σ1 ≈ 13.98 in Fig. 11(a2)], re-entering the oscil-
lation region. The subgraphs in Fig. 11(a) describe
the dependencies of the system’s period on the

feedback strength σ1. With an increase in σ1, the
period first reduces and then stays almost constant.

When the relative strength of the positive feed-
back σ2 is small (σ2 = 0.8), the oscillation is rela-
tively simple [Figs. 11(b1) and 11(b2)]. The system
will undergo supercritical Hopf bifurcation, result-
ing in a stable limit cycle, in the subregion M3 with
an increase of σ1. The system enters an oscillation
region and is no longer back to the stable region
M3 from the oscillation region, and the period of
the system stays almost constant [Fig. 11(b)]. From
Fig. 11(a), when σ2 = 3.8, the oscillation amplitude
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(a) (b)

Fig. 10. Bistable phase diagrams about x–y. (a) is a phase diagram about x–y when σ1 = 1.3 and n1 = 1. (b) is a phase
diagram about x–y when σ1 = 1.12 and n1 = 2. The red solid lines and blue solid lines are x-nullcline or y-nullcline, respec-
tively. Their intersections are equilibrium points, of which solid or hollow circles are stable or unstable, respectively. Black
solid curves with arrows refer to sample trajectories. Magenta dashed or solid lines represent unstable or stable limit cycles,
respectively. The abbreviations and symbols are the same as those in Fig. 9. The other parameters are σ2 = 4.1, K = 2,
α2 = 6 and α4 = 4 in addition to the value of σ1, n1 and n2 marked in the diagrams.

initially increases and then decreases to 0 in the
oscillation range (1.32, 3.42) [Fig. 11(a1)] or (1.12,
10.86) [Fig. 11(a2)], with an increase in σ1. In the
oscillation region (28.3, 30) [Fig. 11(a1)] or (13.98,
30) [Fig. 11(a2)], as the value of σ1 is increased,
the amplitude of the oscillation is a monotoni-
cally increasing function of σ1. When σ2 = 0.8
[Fig. 11(b)], the amplitude will become increasingly
large after the system enters the oscillation region,
similar to the second case in Fig. 11(a).

Second, we examine the impact of the parame-
ter σ2 on the oscillation (Fig. 13). When σ1 = 1.4,
the system will undergo Hopf bifurcation [subcrit-
ical Hopf bifurcation in Fig. 13(a1) and supercrit-
ical Hopf bifurcation in Fig. 13(a2)] in the stable
subregion M3 as the relative strength σ2 increases.
Then, the system undergoes a saddle-node bifur-
cation (SNB) and enters a stable subregion M2.

In the oscillation region, the period and ampli-
tude are increased with an increase in σ2, and
the system period increases exponentially. When
σ1 = 8, the system will be back in the stable region
from an oscillation region with an increase in σ2

[Fig. 13(b)], which indicates that the positive feed-
back can stabilize the system. In the oscillation
region, the system’s period and amplitude decrease
as the parameter σ2 increases when n1 = 1, while
the period and amplitude increase slowly at the
beginning and then decrease suddenly when n1 = 2,
which shows different behaviors.

These results indicate that the strength of the
positive and negative feedback must be within a cer-
tain range to induce an oscillation. Furthermore, the
period and amplitude are nonlinear functions of the
two feedback strengths, especially the strength of
positive feedback, which mainly adjusts the period
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Fig. 11. Hopf bifurcation diagrams with a continual oscillation about σ1 and a period about σ1 in the subdiagrams. The
blue hollow circles and green solid circles in the bifurcation diagrams represent the maximum and minimum amplitudes of
the unstable or stable limit cycle, respectively. The red solid lines and black dashed lines in the bifurcation diagrams indicate
stable or unstable equilibrium points, respectively. SN-PO denotes a saddle-node bifurcation point in a periodic orbit. The
other abbreviations and symbols are the same as those in Fig. 9. The other parameters are K = 2, α2 = 6 and α4 = 4 in
addition to the value of σ2, n1 and n2 marked in the diagrams.
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Fig. 12. A local enlarged diagram of Fig. 11(a1).
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(a1) (a2)

(b1) (b2)

Fig. 13. Hopf bifurcation diagrams with continual oscillation about σ2 and a period of approximately σ2 in the subdiagrams.
Blue hollow circles and green solid circles in the bifurcation diagrams represent the maximum and minimum amplitudes of
an unstable or stable limit cycle, respectively. The red solid lines and black dashed lines in the bifurcation diagrams indicate
stable or unstable equilibrium points, respectively. The abbreviations and symbols are the same as those in Fig. 9. The other
parameters are K = 2, α2 = 6 and α4 = 4, in addition to the values of σ1, n1 and n2 marked in the diagrams.

of the oscillation, and the strength of the auto-
negative feedback mainly adjusts the amplitude of
the oscillation.

5. Conclusions

In this study, we investigate the complex dynamical
behaviors of a coupled network that is composed
of one negative feedback, one auto-feedback (self-
replication) and one positive feedback, which are
derived from innate immune responses. The main
contributions of this study include three aspects.

First, we theoretically infer the conditions
under which the network has the stable equilibrium
points (EPs) and find that no more than three sta-
ble non-negative EPs exist in this network for all
of the cases. Furthermore, we determine that the

necessary condition for the production of bistability
is that the Hill coefficient of the positive feedback
loop is greater than or equal to 2.

Second, through global and local bifurcation
analysis, we reveal that the relative strengths of
the auto-feedback, negative and positive feedback
are important quantities for inducing various dis-
tinguishable dynamical behaviors. Furthermore, we
find that the relative activation coefficient K and
the relative degradation ratios α2 and α4 have
no obvious influence on the network’s dynamical
behaviors.

Third, the strength of the positive and negative
feedbacks must be within a certain range to induce
oscillations. From the numerical simulations, we
also find that the strength of the positive feedback
can adjust the period of oscillation and that the
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strength of the auto-negative feedback can adjust
the amplitude of the oscillation.

These findings provide new insights into the
dynamical behaviors of complex networks that
interlink positive and negative feedback loops. This
work also contributes to our systems-level under-
standing of molecular mechanisms in modularized
networks.
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Appendix A

Proof [Proof of Theorem 1]

(1) The Jacobi matrix of system (3) at En1,1
1 is

J
E

n1,1
1

=




(σ1 − 1)α2 0 0

1
(σ2

K
− 1

)
α4 0

0 1 −1


.

Its corresponding characteristic equation is

|λI − J
E

n1,1
1

| =

∣∣∣∣∣∣∣∣∣∣∣

λ − (σ1 − 1)α2 0 0

−1 λ −
(σ2

K
− 1

)
α4 0

0 −1 λ + 1

∣∣∣∣∣∣∣∣∣∣∣
= [λ − (σ1 − 1)α2]

[
λ −

(σ2

K
− 1

)
α4

]
(λ + 1) = 0.

We can see from the above equation that its roots have negative real parts when σ1 < 1 and σ2 < K,
which shows that the system (3) is locally asymptotically stable at En1,1

1 .

(2) The Jacobi matrix of system (3) at En2,1
2 is

J
E

n1,1
2

=




σ1α2

1 + (zn1,1
2 )n1

− α2 0 0

1
Kσ2α4

(K + yn1,1
2 )2

− α4 0

0 1 −1




.

Its corresponding characteristic equation is

|λI − J
E

n1,1
2

| =

∣∣∣∣∣∣∣∣∣∣∣∣

λ + α2 − σ1α2

1 + (zn1,1
2 )n1

0 0

−1 λ + α4 − Kσ2α4

(K + yn1,1
2 )2

0

0 −1 λ + 1

∣∣∣∣∣∣∣∣∣∣∣∣
=

[
λ + α2 − σ1α2

1 + (zn1,1
2 )n1

][
λ + α4 − Kσ2α4

(K + yn1,1
2 )2

]
(λ + 1)

=
[
λ + α2 − σ1α2

1 + (σ2 − K)n1

](
λ + α4 − Kα4

σ2

)
(λ + 1) = 0.
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We can see from the above equation that its roots have negative real parts if σ2 > max{K,K + (σ1 −
1)

1
n1 }, which shows that the system (3) is locally asymptotically stable at En2,1

2 .

(3) The Jacobi matrix of system (3) at En2,1
3 is

J
E

n1,1
3

=




σ1α2

1 + (zn1,1
3 )n1

− α2 0 −n1σ1α2x
n1,1
3 (zn1,1

3 )n1−1

[1 + (zn1,1
3 )n1]2

1
Kσ2α4

(K + yn1,1
3 )2

− α4 0

0 1 −1




.

Its corresponding characteristic equation is

|λI − J
E

n1,1
3

| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ + α2 − σ1α2

1 + (zn1,1
3 )n1

0
n1σ1α2x

n1,1
3 (zn1,1

3 )n1−1

[1 + (zn1,1
3 )n1 ]2

−1 λ + α4 − Kσ2α4

(K + yn1,1
3 )2

0

0 −1 λ + 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

[
λ + α2 − σ1α2

1 + (zn1,1
3 )n1

] [
λ + α4 − Kσ2α4

(K + yn1,1
3 )2

]
(λ + 1) +

n1σ1α2x
n1,1
3 (zn1,1

3 )n1−1

[1 + (zn1,1
3 )n1 ]2

= λ(λ + 1)


λ + α4 − Kσ2α4[

K + (σ1 − 1)
1

n1

]2

+

n1α2α4(σ1 − 1)
[
K + (σ1 − 1)

1
n1 − σ2

]
σ1

[
K + (σ1 − 1)

1
n1

] = 0,

i.e.

λ3 +


1 + α4 − Kσ2α4[

K + (σ1 − 1)
1

n1

]2

λ2 +


α4 − Kσ2α4[

K + (σ1 − 1)
1

n1

]2

λ

+
n1α2α4(σ1 − 1)

[
K + (σ1 − 1)

1
n1 − σ2

]
σ1

[
K + (σ1 − 1)

1
n1

] = 0. (A.1)

When σ1 > 1, σ2 < K + (σ1 − 1)
1

n1 and α2 < Cn1,1, we can deduce that all coefficients of Eq. (A.1)
are positive and the following inequality holds:

1 + α4 − Kσ2α4[
K + (σ1 − 1)

1
n1

]2



1 − Kσ2[

K + (σ1 − 1)
1

n1

]2

 >

n1α2(σ1 − 1)
[
K + (σ1 − 1)

1
n1 − σ2

]
σ1

[
K + (σ1 − 1)

1
n1

] .

Thus, all conditions in Routh–Hurwitz criterion are satisfied, accordingly, all roots of Eq. (A.1) have
negative real parts, which shows that the system (3) is locally asymptotically stable at En2,1

3 . �

Appendix B

Proof [Proof of Lemma 1]. To facilitate the discussion below, the characteristic equation about EP En1,n2
3

(n2 = 1 or 2) is denoted by

λ3 + Pλ2 + Qλ + R = 0, (B.1)
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where

P = 1 + α4 − n2σ2α4K
n2(σ1 − 1)

n2−1
n1[

Kn2 + (σ1 − 1)
n2
n1

]2 , Q = α4 − n2σ2α4K
n2(σ1 − 1)

n2−1
n1[

Kn2 + (σ1 − 1)
n2
n1

]2
and

R =
n1α2α4(σ1 − 1)

[
Kn2 + (σ1 − 1)

n2
n1 − σ2(σ1 − 1)

n2−1
n1

]
σ1

[
Kn2 + (σ1 − 1)

n2
n1

] .

According to the Hopf bifurcation theorem
and the Routh–Hurwitz criteria, a Hopf bifurcation
occurs at the following conditions P > 0, Q > 0,
R > 0 and PQ − R = 0. Let

H(λ(α2), α2) = λ3 + Pλ2 + Qλ + R. (B.2)

The eigenvalues of Eq. (B.1) at α2 = Cn1,n2 are
λ1,2 = ±i

√
Q and λ3 = −P < 0.

To illustrate the Hopf bifurcation of the system
at α2 = Cn1,n2, we need to prove Re(dλ1,2(Cn1,n2 )

dα2
) >

0. Differentiating (B.2) yields

dλ

dα2
= −

∂H

∂α2

∂H

∂λ

= −P ′λ2 + Q′λ + R′

3λ2 + 2Pλ + Q
,

where P ′ = dP
dα2

= 0, Q′ = dQ
dα2

= 0 and R′ = dR
dα2

=

n1α4(σ1−1)

[
Kn2+(σ1−1)

n2
n1 −σ2(σ1−1)

n2−1
n1

]
σ1

[
Kn2+(σ1−1)

n2
n1

] > 0.

The complex eigenvalues of Eq. (B.1), λ1 and
λ2, occur in pairs. Thus, λ1 is only used to calculate
the following

dλ1

dα2
= −

∂H

∂α2

∂H

∂λ1

=
2QR′ + 2P

√
QR′i

4Q2 + 4P 2Q
.

We find the real part of the above equation (due to
xn1,n2

3 > 0)

Re
(

dλ1(Cn1,n2)
dα2

)
=

2QR′

4Q2 + 4P 2Q

=
2Q

4Q2 + 4P 2Q

n1α4(σ1 − 1)
[
Kn2 + (σ1 − 1)

n2
n1 − σ2(σ1 − 1)

n2−1
n1

]
σ1

[
Kn2 + (σ1 − 1)

n2
n1

]
> 0.

Therefore, a Hopf bifurcation occurs as α2 passes
through Cn1,n2 for the system (2). �

Appendix C

Proof [Proof of Theorem 3]

(1) The Jacobi matrix at En1,n2
1 (xn1,n2

1 = yn1,n2
1 =

zn1,n2
1 = 0) is

JE
n1,n2
1

=




(σ1 − 1)α2 0 0

1 −α4 0

0 1 −1


.

The corresponding characteristic equation is

|λI − JE
n1,n2
1

|

=

∣∣∣∣∣∣∣
λ − (σ1 − 1)α2 0 0

−1 λ + α4 0

0 −1 λ + 1

∣∣∣∣∣∣∣
= [λ − (σ1 − 1)α2](λ + α4)(λ + 1)

= 0.

When σ1 < 1, the roots of the above equa-
tion have negative real parts. Thus, the system
(2) is locally asymptotically stable at En1,n2

1 if
σ1 < 1.
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(2) Before we discuss Theorem 3(2), we first prove
that when σ2 > n2K

(n2−1)
n2−1

n2

, there exist two posi-

tive real roots, denoted by yn1,n2
21 and yn1,n2

22 , for the
equation

yn2 − σ2y
n2−1 + Kn2 = 0. (C.1)

For discussion purposes, we let 0 < yn1,n2
21 < yn1,n2

22 .

When x = 0 and z = y �= 0, we have σ2yn2

Kn2+yn2
−

y = 0 from dy
dt = 0, then yn2 − σ2y

n2−1 + Kn2 = 0.
Set

f(y) = yn2 − σ2y
n2−1 + Kn2 ,

then

f ′(y) = n2y
n2−1 − (n2 − 1)σ2y

n2−2.

Let f ′(y) = 0, then y = n2−1
n2

σ2. When 0 < y <
n2−1

n2
σ2, f ′(y) < 0, and when y > n2−1

n2
σ2, f ′(y) > 0.

Considering f(0) > 0 and f(+∞) > 0, when
f(n2−1

n2
σ2) < 0, i.e. σ2 > n2K

(n2−1)
n2−1

n2

, Eq. (C.1) will

have two different positive real roots, denoted by
yn1,n2

21 and yn1,n2
22 respectively.

Fig. 14. When σ2 > n2K

(n2−1)
n2−1

n2

, then 0 < y
n1,n2
21 <

(n2 − 1)
1

n2 K < n2−1
n2

σ2 < yn1,n2
22 < σ2.

Let yn1,n2
21 < yn1,n2

22 . Thus, when σ2 >
n2K

(n2−1)
n2−1

n2

, then (Fig. 14)

0 < yn1,n2
21 <

n2 − 1
n2

σ2 < yn1,n2
22 < σ2.

Now, we prove that the EP En1,n2
21 is always

unstable.
The Jacobi matrix at En1,n2

21 (xn1,n2
21 = 0,

yn1,n2
21 = zn1,n2

21 ) is

JE
n1,n2
21

=




σ1α2

1 + (zn1,n2
21 )n1

− α2 0 0

1
n2σ2α4K

n2(yn1,n2
21 )n2−1

[Kn2 + (yn1,n2
21 )n2 ]2

− α4 0

0 1 −1




.

The corresponding characteristic equation is

|λI − JE
n1,n2
21

| =

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ + α2 − σ1α2

1 + (zn1,n2
21 )n1

0 0

−1 λ + α4 − n2σ2α4K
n2(yn1,n2

21 )n2−1

[Kn2 + (yn1,n2
21 )n2 ]2

0

0 −1 λ + 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
=
[
λ + α2 − σ1α2

1 + (zn1,n2
21 )n1

]{
λ + α4 − n2σ2α4K

n2(yn1,n2
21 )n2−1

[Kn2 + (yn1,n2
21 )n2 ]2

}
(λ + 1)

=
[
λ + α2 − σ1α2

1 + (yn1,n2
21 )n1

]{
λ + α4 − n2σ2α4K

n2(yn1,n2
21 )n2−1

[Kn2 + (yn1,n2
21 )n2 ]2

}
(λ + 1) = 0.
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In the following, we show that the above equa-
tion always has a positive real root, in other words,
the system (2) cannot be locally asymptotically sta-
ble at En1,n2

21 .
Assume

α4 − n2σ2α4K
n2(yn1,n2

21 )n2−1

[Kn2 + (yn1,n2
21 )n2 ]2

≥ 0,

then

[Kn2 + (yn1,n2
21 )n2 ]2 ≥ n2σ2K

n2(yn1,n2
21 )n2−1.

Due to (yn1,n2
21 )n2 − σ2(y

n1,n2
21 )n2−1 + Kn2 = 0, the

above inequality can be rewritten as

Kn2 + (yn1,n2
21 )n2 ≥ n2K

n2 .

Then the inequality yn1,n2
21 ≥ (n2 − 1)

1
n2 K must be

satisfied.
However, when σ2 > n2K

(n2−1)
n2−1

n2

,

f((n2 − 1)
1

n2 K)

= [(n2 − 1)
1

n2 K]n2 − σ2[(n2 − 1)
1

n2 K]n2−1

+ Kn2

= Kn2−1[n2K − σ2(n2 − 1)
n2−1

n2 ]

< 0.

This indicates that Eq. (C.1) has a positive real root

from 0 to (n2−1)
1

n2 K, i.e. 0 < yn1,n2
21 < (n2−1)

1
n2 K,

which conflicts with yn1,n2
21 ≥ (n2 − 1)

1
n2 K, i.e. the

assumption α4− n2σ2α4Kn2(y
n1,n2
21 )n2−1

[Kn2+(y
n1,n2
21 )n2 ]2

≥ 0 is wrong.

Therefore, the above characteristic equation for
the non-negative EP En1,n2

21 always has a positive
real root which means that the system (2) cannot
be locally asymptotically stable at En1,n2

21 , that is,
En1,n2

21 is always unstable.

(3) The Jacobi matrix at En1,n2
22 is

JE
n1,n2
22

=




σ1α2

1 + (zn1,n2
22 )n1

− α2 0 0

1
n2σ2α4K

n2(yn1,n2
22 )n2−1

[Kn2 + (yn1,n2
22 )n2 ]2

− α4 0

0 1 −1




.

The corresponding characteristic equation is

|λI − JE
n1,n2
22

| =

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ + α2 − σ1α2

1 + (zn1,n2
22 )n1

0 0

−1 λ + α4 − n2σ2α4K
n2(yn1,n2

22 )n2−1

[Kn2 + (yn1,n2
22 )n2 ]2

0

0 −1 λ + 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
=
[
λ + α2 − σ1α2

1 + (zn1,n2
22 )n1

]{
λ + α4 − n2σ2α4K

n2(yn1,n2
22 )n2−1

[Kn2 + (yn1,n2
22 )n2 ]2

}
(λ + 1) = 0

=
[
λ + α2 − σ1α2

1 + (yn1,n2
22 )n1

]{
λ + α4 − n2σ2α4K

n2(yn1,n2
22 )n2−1

[Kn2 + (yn1,n2
22 )n2 ]2

}
(λ + 1) = 0.

We know that the system (2) is locally asymptotically stable at En1,n2
22 if the roots of the above equation

have negative real parts, indicating that the two conditions,

α4 − n2σ2α4K
n2(yn1,n2

22 )n2−1

[Kn2 + (yn1,n2
22 )n2 ]2

> 0 (C.2)
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and

σ1 < 1 + (yn1,n2
22 )n1 , (C.3)

must be satisfied.
First, we look for the conditions satisfying the

inequality (C.2), i.e.

[Kn2 + (yn1,n2
22 )n2 ]2 > n2σ2K

n2(yn1,n2
22 )n2−1.

Due to (yn1,n2
22 )n2 − σ2(y

n1,n2
22 )n2−1 + Kn2 = 0, the

above inequality can be rewritten as

Kn2 + (yn1,n2
22 )n2 > n2K

n2 ,

i.e.

yn1,n2
22 > (n2 − 1)

1
n2 K.

Because yn1,n2
22 > n2−1

n2
σ2 and σ2 > n2K

(n2−1)
n2−1

n2

(Fig. 14), then

yn1,n2
22 >

n2 − 1
n2

n2K

(n2 − 1)
n2−1

n2

,

i.e.

yn1,n2
22 > (n2 − 1)

1
n2 K.

Thus, when σ2 > n2K

(n2−1)
n2−1

n2

, the inequality (C.2)

can be satisfied.
Second, to satisfy (C.3), i.e.

yn1,n2
22 > (σ1 − 1)

1
n1 ,

we must satisfy f((σ1−1)
1

n1 ) < 0 when (σ1−1)
1

n1 ≥
n2−1

n2
σ2 or f ′((σ1 − 1)

1
n1 ) < 0 when (σ1 − 1)

1
n1 <

n2−1
n2

σ2 from Fig. 14.

When (σ1−1)
1

n1 ≥ n2−1
n2

σ2 and f((σ1−1)
1

n1 ) <
0, we have

Kn2 + (σ1 − 1)
n2
n1

(σ1 − 1)
n2−1

n1

< σ2 ≤ n2

n2 − 1
(σ1 − 1)

1
n1 .

Or when (σ1 − 1)
1

n1 < n2−1
n2

σ2 and f ′((σ1 − 1)
1

n1 ) <
0, we have

σ2 >
n2

n2 − 1
(σ1 − 1)

1
n1 . (C.4)

That is, when σ1 ≥ 1 + (n2 − 1)
n1
n2 Kn1 and σ2 >

Kn2+(σ1−1)
n2
n1

(σ1−1)
n2−1

n1

, or when σ1 < 1+(n2 −1)
n1
n2 Kn1 and

σ2 > n2
n2−1(σ1 − 1)

1
n1 , we have yn1,n2

22 > (σ1 − 1)
1

n1 ,
i.e. the inequality (C.3) can be established.

Taking into account σ2 > n2K

(n2−1)
n2−1

n2

, the

inequality (C.4) always holds when σ1 < 1 + (n2 −
1)

n1
n2 Kn1. Thus, when σ1 ≥ 1 + (n2 − 1)

n1
n2 Kn1 and

σ2 > Kn2+(σ1−1)
n2
n1

(σ1−1)
n2−1

n1

, or when σ2 > n2K

(n2−1)
n2−1

n2

, then

we can ensure the inequality (C.3).
In summary, if σ2 > n2K

(n2−1)
n2−1

n2

and σ2 >

Kn2+(σ1−1)
n2
n1

(σ1−1)
n2−1

n1

(σ1 ≥ 1 + (n2 − 1)
n1
n2 Kn1), the sys-

tem (2) is locally asymptotically stable at En1,n2
22 .

(4) The Jacobi matrix at En1,n2
3 is

JE
n1,n2
3

=




σ1α2

1 + (zn1,n2
3 )n1

− α2 0 −n1σ1α2x
n1,n2
3 (zn1,n2

3 )n1−1

[1 + (zn1,n2
3 )n1 ]2

1
n2σ2α4K

n2(yn1,n2
3 )n2−1

[Kn2 + (yn1,n2
3 )n2 ]2

− α4 0

0 1 −1




.

The corresponding characteristic equation is

|λI − JE
n1,n2
3

| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ + α2 − σ1α2

1 + (zn1,n2
3 )n1

0
n1σ1α2x

n1,n2
3 (zn1,n2

3 )n1−1

[1 + (zn1,n2
3 )n1 ]2

−1 λ + α4 − n2σ2α4K
n2(yn1,n2

3 )n2−1

[Kn2 + (yn1,n2
3 )n2 ]2

0

0 −1 λ + 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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=
(

λ + α2 − σ1α2

1 + (zn1,n2
3 )n1

){
λ + α4 − n2σ2α4K

n2(yn1,n2
3 )n2−1

[Kn2 + (yn1,n2
3 )n2 ]2

}
(λ + 1)

+
n1σ1α2x

n1,n2
3 (zn1,n2

3 )n1−1

[1 + (zn1,n2
3 )n1 ]2

= λ(λ + 1)


λ + α4 − n2σ2α4K

n2(σ1 − 1)
n2−1

n1[
Kn2 + (σ1 − 1)

n2
n1

]2



+
n1α2α4(σ1 − 1)

[
Kn2 + (σ1 − 1)

n2
n1 − σ2(σ1 − 1)

n2−1

n1

]
σ1

[
Kn2 + (σ1 − 1)

n2
n1

] = 0,

i.e.

λ3 +


1 + α4 − n2σ2α4K

n2(σ1 − 1)
n2−1

n1[
Kn2 + (σ1 − 1)

n2
n1

]2

λ2 +


α4 − n2σ2α4K

n2(σ1 − 1)
n2−1

n1[
Kn2 + (σ1 − 1)

n2
n1

]2

λ

+
n1α2α4(σ1 − 1)

[
Kn2 + (σ1 − 1)

n2
n1 − σ2(σ1 − 1)

n2−1
n1

]
σ1

[
Kn2 + (σ1 − 1)

n2
n1

] = 0.

To simplify the discussion, we let

λ3 + Pλ2 + Qλ + R = 0,

where

P = 1 + α4 − n2σ2α4K
n2(σ1 − 1)

n2−1
n1[

Kn2 + (σ1 − 1)
n2
n1

]2 , Q = α4 − n2σ2α4K
n2(σ1 − 1)

n2−1
n1[

Kn2 + (σ1 − 1)
n2
n1

]2
and

R =
n1α2α4(σ1 − 1)

[
Kn2 + (σ1 − 1)

n2
n1 − σ2(σ1 − 1)

n2−1
n1

]
σ1

[
Kn2 + (σ1 − 1)

n2
n1

] .

From the Routh–Hurwitz criterion [Dorf & Bishop, 2001], when P > 0, Q > 0, R > 0 and PQ > R, the
roots of the characteristic equation have negative real parts, i.e. the system (2) is locally asymptotically
stable at En1,n2

3 . Obviously, if Q > 0, then P > 0. We assume Q > 0 and PQ > R, then[
Kn2 + (σ1 − 1)

n2
n1

]2
> n2σ2K

n2(σ1 − 1)
n2−1

n1

and 
1 + α4 − n2σ2α4K

n2(σ1 − 1)
n2−1

n1[
Kn2 + (σ1 − 1)

n2
n1

]2

 ·


α4 − n2σ2α4K

n2(σ1 − 1)
n2−1

n1[
Kn2 + (σ1 − 1)

n2
n1

]2



>
n1α2α4(σ1 − 1)

[
Kn2 + (σ1 − 1)

n2
n1 − σ2(σ1 − 1)

n2−1
n1

]
σ1

[
Kn2 + (σ1 − 1)

n2
n1

] ,
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i.e. σ2 <

[
Kn2+(σ1−1)

n2
n1

]2

n2Kn2(σ1−1)
n2−1

n1

and α2 < Cn1,n2, where

Cn1,n2 =


1 + α4 − n2σ2α4K

n2(σ1 − 1)
n2−1

n1[
Kn2 + (σ1 − 1)

n2
n1

]2

 ·


1 − n2σ2K

n2(σ1 − 1)
n2−1

n1[
Kn2 + (σ1 − 1)

n2
n1

]2



n1(σ1 − 1)
[
Kn2 + (σ1 − 1)

n2
n1 − σ2(σ1 − 1)

n2−1
n1

]
σ1

[
Kn2 + (σ1 − 1)

n2
n1

]
.

In addition, due to the conditions of xn1,n2
3 > 0, yn1,n2

3 > 0 and zn1,n2
3 > 0, then σ1 > 1 and

σ2 < Kn2+(σ1−1)
n2
n1

(σ1−1)
n2−1

n1

.

Therefore, if

σ1 > 1, σ2 < min




Kn2 + (σ1 − 1)
n2
n1

(σ1 − 1)
n2−1

n1

,

[
Kn2 + (σ1 − 1)

n2
n1

]2
n2Kn2(σ1 − 1)

n2−1
n1




and α2 < Cn1,n2, the system (2) is locally asymptotically stable at En1,n2
3 . �
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