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Abstract
We present a finite element analysis of electrical impedance tomography
for reconstructing the conductivity distribution from electrode voltage
measurements by means of Tikhonov regularization. Two popular choices of
the penalty term, i.e., the H1(�)-norm smoothness penalty and total variation
seminorm penalty, are considered. A piecewise linear finite element method
is employed for discretizing the forward model, i.e., the complete electrode
model, the conductivity, and the penalty functional. The convergence of the
finite element approximations for the Tikhonov model on both polyhedral and
smooth curved domains is established. This provides rigorous justifications
for the ad hoc discretization procedures. Numerical experiments confirm the
convergence analysis.

Keywords: electrical impedance tomography, finite element approximation,
convergence analysis, Tikhonov regularization

(Some figures may appear in colour only in the online journal)

1. Introduction

Electrical impedance tomography (EIT) is a very popular diffusive imaging modality
for probing internal structures of the concerned object, by recovering its electrical
conductivity/permittivity distribution from voltage measurements on the boundary. One typical
experimental setup is as follows. One first attaches a set of metallic electrodes to the surface
of the object. Then one injects an electric current into the object through these electrodes,
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which induces an electromagnetic field inside the object. Finally, one measures the electric
voltages on these electrodes. The procedure is often repeated several times with different input
currents in order to yield sufficient information on the sought-for conductivity distribution. This
physical process can be most accurately described by the complete electrode model (CEM)
[8, 35], but the simpler continuum model is also frequently employed in simulation studies. The
imaging modality has attracted considerable interest in applications, e.g., in medical imaging,
geophysical prospecting, nondestructive evaluation and pneumatic oil pipeline conveying.

Due to its broad range of prospective applications, a large number of imaging algorithms
have been developed, and have delivered very encouraging reconstructions. These methods
essentially utilize the idea of regularization in diverse forms, in order to overcome the severe
ill-posed nature of the imaging task, and occasionally also the idea of (recursive) linearization
to enable computational tractability. We refer interested readers to the reviews [1, 4] and
references [9, 20, 21, 24, 26, 28, 30, 33, 34] for a very incomplete list of existing imaging
methods. One prominent idea underlying many popular EIT imaging techniques is Tikhonov
regularization with convex variational penalties, e.g., smoothness, total variation and more
recently sparsity constraints [21, 23]. These approaches have demonstrated very promising
reconstructions for real data [5, 18, 25]. However, the analysis of such Tikhonov formulations,
surprisingly, has not received due attention, despite their popularity in and relevance to practical
applications. We are only aware of very few works in this direction [22, 32, 33]. In the
interesting works [32, 33], Rondi and Santosa analyzed the existence, stability and consistency
of the Mumford–Shah/total variation formulation. Recently, Jin and Maass [22] established the
existence, stability, consistency and especially convergence rates for the conventional Sobolev
H1-penalty and sparsity constraints. These works provide partial theoretical justifications for
the practical usage of related imaging algorithms.

In practice, the numerical implementation of these imaging algorithms inevitably requires
discretizing the forward model and the Tikhonov functional into a finite-dimensional discrete
problem. This is often achieved by the finite element method, due to its versatility for handling
general domain geometries, spatially varying coefficients and solid theoretical underpinnings.
However, the solution to the discrete optimization problem is different from that to the
continuous Tikhonov model due to the discretization errors. This raises several interesting
questions on the discrete approximations. One fundamental question is about the validity of
the discretization procedure: does the discrete approximation converge to a solution to the
continuous Tikhonov formulation as the mesh size tends to zero? Since for inverse problems,
small errors in the data/model can possibly cause large deviations in the solution, it is unclear
whether the discretization error induces only small changes on the solution. Hence, the validity
of the discretization strategy does not follow automatically. To the best of our knowledge, the
convergence issue has not been addressed for Tikhonov regularization of EIT, despite its
routine applications.

However, there are several related works [14, 27, 28]. In the interesting work [14],
Ervedoza and de Gournay obtained a stability estimate for the discrete Calderon problem
(uniform with respect to the discretization parameter h), by using discrete Carleman estimates
for the discrete Laplace operator. The work focuses on the discrete Dirichlet-to-Neumann map.
In [29], Lechleiter and Rieder established the convergence of the finite element discretization
of the EIT forward problem, for the special case of piecewise polynomial conductivity fields.
However, the conductivity fields are not discretized in the convergence analysis. Further, we
note also that a closely related problem of compensating the effect of an imprecise boundary
on the resolution of numerical reconstructions has been studied in [27].

In this work, we address the convergence issue of finite element approximations.
Specifically, we consider the CEM, and discuss two popular imaging techniques based on
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Tikhonov regularization with smoothness/total variation penalties. These methods have been
extensively used [5, 9, 12, 33, 36, 37]. We shall distinguish two different scenarios: polyhedral
domains and convex smooth curved domains. The former allows exact triangulation with
simplicial elements, whereas the latter invokes domain approximations and hence the analysis
is much more involved. The simpler polyhedral case serves to illustrate the main ideas of
the proof. We remark that for practical applications, curved domains are very common and
their accurate discrete description is essential for getting reasonable reconstructions, e.g., in
imaging human body, and hence it is of immense interest to analyze this case.

The rest of the paper is organized as follows. In section 2, we describe the CEM, collect
some preliminary regularity results, and recall the Tikhonov regularization formulation. Then
the convergence analysis for polyhedral domains is discussed in section 3, and for curved
domains in section 4. In section 5, two numerical examples are presented to illustrate the
convergence theory. Finally, concluding remarks are given in section 6. Throughout, we shall
use C to denote a generic constant, which may differ at different occurrences but does not
depend on the mesh size h. We shall also use standard notation from [15] for the Sobolev
spaces W m,p(�).

2. Preliminaries

Here we recapitulate the mathematical formulation of the CEM and discuss its analytical
properties. We shall also briefly describe the continuous Tikhonov formulation.

2.1. Complete electrode model

According to the comparative experimental studies in [8, 35], the CEM is currently the most
accurate mathematical model for reproducing EIT experimental data. This is attributed to its
faithful modeling of the physics: it takes into account several important features of real EIT
experiments, i.e., discrete nature of the electrodes, shunting effect and contact impedance
effect. We shall briefly describe the mathematical model and its analytical properties in this
part. These properties will be useful in the convergence analysis below.

Let � be an open and bounded domain in R
d (d = 2, 3) with a Lipschitz continuous

boundary �. We denote the set of electrodes by {el}L
l=1, which are open connected subsets of

the boundary � and disjoint from each other, i.e., ēi∩ēk = ∅ if i �= k. The applied current on the
lth electrode el is denoted by Il , and the current vector I = (I1, . . . , IL)t satisfies

∑L
l=1 Il = 0

in view of the law of charge conservation. Let the space R
L
� be the subspace of the vector

space R
L with zero mean, then we have I ∈ R

L
�. The electrode voltage U = (U1, . . . ,UL)t is

normalized such that U ∈ R
L
�, which represents a grounding condition. Then the mathematical

model for the CEM reads: given the electrical conductivity σ , positive contact impedances
{zl}L

l=1 and an input current pattern I ∈ R
L
�, find the potential u ∈ H1(�) and electrode voltage

U ∈ R
L
� such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∇ · (σ∇u) = 0 in �,

u + zlσ
∂u

∂n
= Ul on el, l = 1, 2, . . . , L,∫

el

σ
∂u

∂n
ds = Il for l = 1, 2, . . . , L,

σ
∂u

∂n
= 0 on �\ ∪L

l=1 el .

(1)
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The physical motivation behind the model (1) is as follows. The governing equation is
derived under a quasi-static low frequency assumption on the electromagnetic process [35].
The second line describes the contact impedance effect: when injecting electrical currents
into the object, a highly resistive thin layer forms at the electrode–electrolyte interface (due
to certain electrochemical processes), which causes potential drops across the electrode–
electrolyte interface. The potential drop is described by Ohm’s law. Further, it takes into
account the fact that metallic electrodes are perfect conductors, and hence the voltage is
constant on each electrode. The third line reflects the fact that the current Il injected through
the electrode el is completely confined to el . The complex boundary conditions faithfully
capture the physical process, and thus the model (1) is capable of reproducing experimental
data within the measurement precision [8, 35].

Due to physical constraint, the conductivity distribution is naturally bounded both from
below and from above by positive constants, hence we introduce the following admissible set

A = {σ : λ � σ (x) � λ−1 a.e. x ∈ �},
for some λ ∈ (0, 1). We shall endow the set with Lr(�) norms, r � 1.

We denote by H the product space H1(�) ⊗ R
L
� with its norm defined by

‖(u,U )‖2
H

= ‖u‖2
H1(�)

+ ‖U‖2
RL .

A convenient equivalent norm on the space H is given in the next lemma [35].

Lemma 2.1. On the space H, the norm ‖ · ‖H is equivalent to the norm ‖ · ‖H,∗ defined by

‖(u,U )‖2
H,∗ = ‖∇u‖2

L2(�)
+

L∑
l=1

‖u − Ul‖2
L2(el )

.

The weak formulation of the model (1) reads: find (u,U ) ∈ H such that∫
�

σ∇u · ∇v dx +
L∑

l=1

z−1
l

∫
el

(u − Ul )(v − Vl ) ds =
L∑

l=1

IlVl ∀(v,V ) ∈ H. (2)

Now for any fixed σ ∈ A, the existence and uniqueness of a solution (u,U ) ≡
(u(σ ),U (σ )) ∈ H to the weak formulation (2) follows directly from lemma 2.1 and Lax–
Milgram theorem, and further, it depends continuously on the input current pattern I [35].
The next result presents an improved regularity of the solution (u(σ ),U (σ )) to system (1). It
can be derived from the Neumann analogue [17, 19] of Meyers’ celebrated gradient estimates
[31]; see [22] for details.

Theorem 2.1. Let λ ∈ (0, 1), and σ (x) ∈ [λ, λ−1] almost everywhere. Then there exists a
constant Q(λ, d) > 2, which depends only on the domain �, the spatial dimension d and the
constant λ, such that for any q ∈ (2, Q(λ, d)), the solution (u(σ ),U (σ )) ∈ H to system (1)
satisfies the following estimate

‖u‖W 1,q(�) � C‖I‖,
where the constant C = C(�, d, λ, q).

Remark 2.1. The parameter Q depends on the regularity of the domain �. If the domain
� is of class C1, then Q(λ, d) → ∞ as λ → 1 [19]. For a general Lipschitz domain, e.g.,
polyhedrons, there also always exists some Q(λ, d) > 2 for any λ < 1, cf [19, section 5].
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The next result shows that the parameter-to-state map σ → (u(σ ),U (σ )) ∈ H is
continuous with respect to the Lr(�) topology on the admissible set A.

Lemma 2.2. Let the sequence {σn} ⊂ A converge to some σ ∗ ∈ A in Lr(�), r � 1. Then the
sequence of the solutions {(u(σn),U (σn))} converges to (u(σ ∗),U (σ ∗)) in H.

Proof. It follows from the weak formulations of the solutions (un,Un) ≡ (u(σn),U (σn)) and
(u∗,U∗) ≡ (u(σ ∗),U (σ ∗)) (cf (2)) that for all (v,V ) ∈ H∫

�

σn∇(u∗ − un) · ∇v dx +
∫

�

(σ ∗ − σn)∇u∗ · ∇v dx

+
L∑

l=1

z−1
l

∫
el

(u∗ − un − U∗
l + Un,l )(v − Vl ) ds = 0.

Upon setting the test function (v,V ) to (u∗ − un,U∗ − Un) ∈ H in this identity, and using
theorem 2.1 and the generalized Hölder’s inequality, we derive

min
(
λ,

{
z−1

l

}) (
‖∇(u∗ − un)‖2

L2(�)
+

L∑
l=1

‖u∗ − un − U∗
l + Un,l‖2

L2(el )

)

�
∫

�

σn|∇(u∗ − un)|2 dx +
L∑

l=1

z−1
l

∫
el

|u∗ − un − U∗
l + Un,l |2 ds

= −
∫

�

(σ ∗ − σn)∇u∗ · ∇(u∗ − un) dx

� ‖σ ∗ − σn‖Lp(�)‖∇u∗‖Lq(�)‖∇(u∗ − un)‖L2(�)

� ‖σ ∗ − σn‖Lp(�)‖∇u∗‖Lq(�)‖(u∗ − un,U∗ − Un)‖H,

where the exponent q ∈ (2, Q(λ, d)) is from theorem 2.1 and the exponent p satisfies
p−1 + q−1 = 2−1. The desired assertion follows immediately if r � p. In the case r < p, we
exploit the L∞(�) bound of the admissible set A, i.e.,∫

�

|σ ∗ − σn|p dx � λr−p
∫

�

|σ ∗ − σn|r dx.

This together with lemma 2.1 shows the desired assertion. �

2.2. Tikhonov regularization

The EIT inverse problem is to reconstruct an approximation to the physical conductivity σ †

from noisy measurements U δ of the electrode voltage U (σ †), corresponding to several input
currents. It is severely ill-posed in the sense that small errors in the data can lead to very
large deviations in the solutions. Therefore, some sort of regularization is beneficial, and it
is usually incorporated into EIT imaging algorithms, either implicitly or explicitly, in order
to yield stable yet accurate conductivity images. One of the most popular and successful
techniques is the standard Tikhonov regularization. It amounts to minimizing the celebrated
Tikhonov functional

min
σ∈A

{
J(σ ) = 1

2‖U (σ ) − U δ‖2 + α	(σ )
}
, (3)

and then taking the minimizer, denoted by σ δ
α , as an approximation to the sought-for physical

conductivity σ †. Here the first term in the functional J captures the information encapsulated
in the data U δ . For simplicity, we consider only one dataset, and the adaptation to multiple
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datasets is straightforward. The scalar α > 0 is known as a regularization parameter, and
controls the tradeoff between the two terms. The second term 	(σ ) in the functional J imposes
a priori regularity knowledge (smoothness) on the expected conductivity distributions. Two
most commonly used penalties are 	(σ ) = 1

2‖σ‖2
H1(�)

and 	(σ ) = |σ |TV(�) in the space of
functions with bounded variation, i.e.,

BV(�) = {v ∈ L1(�) : ‖v‖BV(�) < ∞},
where ‖v‖BV(�) = ‖v‖L1(�) + |v|TV(�) with the total variation semi-norm |v|TV(�) = ∫

�
|Dv|

defined by ∫
�

|Dv| = sup
g∈(C1

0 (�))d

|g(x)|�1

∫
�

v div(g) dx.

Here the H1(�)-smoothness approach allows reconstructing conductivity distributions that
are globally smooth, which often retains well their main features, whereas the total
variation approach is well suited to discontinuous, especially piecewise constant, conductivity
distributions [9, 33]. These two approaches represent the most popular EIT imaging techniques
in practice. Theoretically, the existence and consistency of the continuous model (3) for the total
variation and smoothness penalty have recently been established in [32] and [22], respectively,
where in the latter work convergence rates for the smoothness and sparsity constraints were
also provided.

One useful tool in the convergence analysis is the following embedding results [2, 15].

Lemma 2.3. The spaces H1(�) and BV(�) have the following embedding properties:

(a) The space H1(�) embeds compactly into Lp(�) for p < ∞ if d = 2 and p < 6 if d = 3.
(b) The space BV(�) embeds compactly into Lp(�) for p < d

d−1 .

A direct consequence of lemmas 2.2 and 2.3 is the weak continuity. The concept of weak
convergence in the BV space used below follows [2, definition 10.1.2].

Corollary 2.1. Let the sequence {σn} ⊂ A converge to some σ ∗ ∈ A weakly in either
H1(�) or BV(�). Then the sequence of the solutions {(u(σn),U (σn))} converges strongly to
(u(σ ∗),U (σ ∗)) in H.

Corollary 2.1 implies that the forward parameter-to-state map is weakly sequentially
closed, and in view of the classical nonlinear Tikhonov regularization theory [13], this directly
yields the existence of a minimizer and its stability. We will also need the following density
result for the space BV(�); see [7, lemma 3.3] for a proof.

Lemma 2.4. Let g ∈ BV(�). Then for any ε > 0, there exists a function gε ∈ C∞(�) such
that ∫

�

|g − gε | dx < ε,

∣∣∣∣∫
�

|∇gε | dx −
∫

�

|Dg|
∣∣∣∣ < ε.

In order to obtain conductivity images from a computer implementation of the Tiknonov
approach, one necessarily needs to discretize the forward problem (1) and the Tikhonov
functional (3) by restricting the admissible conductivities to a certain finite-dimensional
subspace. In practice, this is usually achieved by the finite element method due to its solid
theoretical foundation and versatility for handling general domain geometries, as often occurs
in practical scenarios. The main goal of the present study is to provide theoretical justifications
for such procedures. We shall discuss two scenarios separately: polyhedral domains and
(convex) smooth curved domains in sections 3 and 4, respectively.
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3. Convergence for polyhedral domains

In this part, we discuss the case of polyhedral domains. Let � be an open bounded polyhedral
domain. To discretize the imaging problem, we first triangulate the domain �. Let Th be a
family of shape regular, quasi-uniform triangulation of the domain �, with the mesh consisting
of simplicial elements. The mesh size (the radius of the smallest circle/sphere circumscribing
largest element) of the mesh Th is denoted by h. On the mesh Th, we define a continuous
piecewise linear finite element space

Vh = {v ∈ C(�) : v|T ∈ P1(T ) ∀T ∈ Th},
where the space P1(T ) consists of all linear functions on the element T . The same space
Vh is used for approximating both the potential u and the conductivity σ . Nonetheless, we
observe that in practice, it is possible to employ different meshes for the potential and the
conductivity, for which the analysis below remains valid upon minor modifications. The use of
piecewise linear finite elements is especially popular since the data (conductivity and boundary
conditions) has only limited regularity.

With the spaceVh, we can define two important operators: the canonical nodal interpolation
operator Ih : C(�) → Vh and the H1-projection operator Rh : H1(�) → Vh defined by∫

�

∇Rhu · ∇v dx +
∫

�

Rhuv dx =
∫

�

∇u · ∇v dx +
∫

�

uv dx ∀v ∈ Vh.

It is well known [10] that the operators Ih and Rh satisfy for any p > d

lim
h→0

‖v − Ihv‖L∞(�) = 0 ∀v ∈ W 1,p(�),

lim
h→0

‖v − Rhv‖H1(�) = 0 ∀v ∈ H1(�). (4)

Now we can describe the finite element approximation scheme. First, we approximate the
forward map (u(σ ),U (σ )) ∈ H by (uh,Uh) ≡ (uh(σh),Uh(σh)) ∈ Hh ≡ Vh ⊗ R

L
� defined by∫

�

σh∇uh · ∇vh dx +
L∑

l=1

z−1
l

∫
el

(uh − Uh,l )(vh − Vl ) ds =
L∑

l=1

IlVl ∀(vh,V ) ∈ Vh ⊗ R
L
�, (5)

where the (discretized) conductivity σh lies in the discrete admissible set

Ah = {σh ∈ Vh : λ � σh � λ−1 a.e. �} = A ∩ Vh.

Then the discrete optimization problem reads

min
σh∈Ah

{
Jh(σh) = 1

2‖Uh(σh) − U δ‖2 + α	(σh)
}
, (6)

where the discrete penalty functional 	(σh) is given by 	(σh) = 1
2‖σh‖2

H1(�)
and 	(σh) =

|σh|TV(�) for the smoothness and total variation penalty, respectively.

Remark 3.1. In practice, even though the domain � is polyhedral, the electrode surfaces {el}
can still be curved, and this calls for the approximation of the surfaces {el} by polyhedral
surfaces in the discrete variational formulation. However, we defer relevant discussions to
section 4.

We observe that, due to the use of linear finite elements, the box constraint on σh reduces
to that on the nodal values, which greatly facilitates the solution of the resulting discrete
optimization problem. Since the set Ah is finite dimensional and uniformly bounded, the
compactness and the norm equivalence in finite-dimensional spaces immediately yields the

7
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existence of a minimizer σ ∗
h ∈ Ah to the discrete functional Jh(σh) over the discrete admissible

set Ah for any h > 0.
One basic question is whether the sequence {σ ∗

h } of discrete minimizers converges to
a minimizer of the continuous functional J(σ ) as the mesh size h tends to zero. This issue
is concerned with the validity of the approximation procedure, and hence it is of significant
practical interest. To this end, we shall first establish a discrete analogue of lemma 2.2 on the
approximation property of the discrete parameter-to-state map σh �→ (uh(σh),Uh(σh)) to the
continuous counterpart σ �→ (u(σ ),U (σ )). The lemma will play a crucial role in establishing
the desired convergence for polyhedral domains.

Lemma 3.1. Let the sequence {σh}h>0 ⊂ Ah ⊂ A converge in Lr(�), r � 1, to some σ ∈ A
as h tends to zero. Then the sequence of finite element approximations {(uh(σh),Uh(σh))}h>0

converges to (u(σ ),U (σ )) in H as h tends to zero.

Proof. First recall the weak formulation of (u,U ) ≡ (u(σ ),U (σ )) and (uh,Uh) ≡
(uh(σh),Uh(σh)) in (2) and (5), respectively. It follows from Lax–Milgram theorem that
both (u,U ) and (uh,Uh) are uniformly bounded in H. By setting the test functions (v,V ) and
(vh,V ) in identities (2) and (5) to (Rhu − uh,U − Uh) ∈ Hh ⊂ H and then subtracting them,
we deduce∫

�

σh|∇(u − uh)|2 dx +
L∑

l=1

z−1
l

∫
el

|u − uh − Ul + Uh,l |2 ds

= −
∫

�

(σ − σh)∇u · ∇(Rhu − uh) dx +
∫

�

σh∇(u − uh) · ∇(u − Rhu) dx

+
L∑

l=1

z−1
l

∫
el

(u − Rhu)(u − uh − Ul + Uh,l ) ds := I + II + III.

It suffices to estimate the three terms (I, II and III) on the right-hand side. For the first term I,
the generalized Hölder’s inequality gives

|I| � ‖σ − σh‖Lp(�)‖∇u‖Lq(�)‖∇(Rhu − uh)‖L2(�),

where the exponent q > 2 is from theorem 2.1, and the exponent p satisfies p−1 + q−1 = 2−1.
Further, we note that

‖∇(Rhu − uh)‖L2(�) � ‖∇Rhu‖L2(�) + ‖∇uh‖L2(�)

� C(‖u‖H1(�) + ‖uh‖H1(�)) < C.

By repeating the proof in lemma 2.2, we deduce that the first term I → 0 as h tends to zero.
For the second term II, we deduce from the uniform bound of the discrete admissible set Ah

that

II � ‖σh‖L∞(�)‖∇(u − uh)‖L2(�)‖∇(u − Rhu)‖L2(�)

� λ−1‖∇(u − uh)‖L2(�)‖∇(u − Rhu)‖L2(�),

8
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which tends to zero in light of the approximation property of the operator Rh in (4) and
uniform boundedness of ‖∇(u − uh)‖L2(�). The third term III follows analogously from
the trace theorem [15]. These three estimates together with lemma 2.1 yield the desired
assertion. �

Now we can state the first main result, i.e., the convergence of finite element
approximations {σ ∗

h } on polyhedral domains.

Theorem 3.1. Let {σ ∗
h ∈ Ah}h>0 be a sequence of minimizers to the discrete optimization

problem (6). Then it contains a subsequence convergent to a minimizer of problem (3) as h
tends to zero.

(a) The convergence is weakly in H1(�), if 	(σh) = 1
2‖σh‖2

H1(�)
.

(b) The convergence is in L1(�), if 	(σh) = |σh|TV(�).

Proof. First we note that the constant function σh ≡ 1 belongs to the discrete admissible set
Ah for all h. The minimizing property of σ ∗

h indicates that the sequence of functional values
{Jh(σ

∗
h )} is uniformly bounded. Thus the sequence {	(σ ∗

h )} is uniformly bounded, and there
exists a subsequence, again denoted by {σ ∗

h }, and some σ ∗ ∈ A, such that σ ∗
h → σ ∗ weakly

either in H1(�) or BV(�). By lemma 2.3, we have σ ∗
h → σ ∗ in L1(�), which together with

lemma 3.1 implies

(uh(σ
∗
h ),U (σ ∗

h )) → (u(σ ∗),U (σ ∗)) in H as h → 0.

Meanwhile, the weak lower semicontinuity of norms implies 	(σ ∗) � lim infh→0 	(σ ∗
h ).

Altogether, we derive

J(σ ∗) = 1
2‖U (σ ∗) − U δ‖2 + α	(σ ∗)

� lim
h→0

1
2‖Uh(σ

∗
h ) − U δ‖2 + lim inf

h→0
α	(σ ∗

h )

� lim inf
h→0

(
1
2‖Uh(σ

∗
h ) − U δ‖2 + α	(σ ∗

h )
) = lim inf

h→0
Jh(σ

∗
h ). (7)

Now we discuss the two penalties separately. First we consider the case 	(σ ) =
1
2‖σ‖2

H1(�)
. For any σ ∈ A, the density of the space C∞(�) in the space H1(�) [15] implies

the existence of a sequence {σ ε} ⊂ C∞(�) ∩ A such that

lim
ε→0+

‖σ ε − σ‖H1(�) = 0. (8)

The minimizing property of σ ∗
h gives Jh(σ

∗
h ) � Jh(Ihσ

ε ) for any ε > 0. Letting h to zero, and
appealing to the property of interpolation operator Ih, lemma 3.1 and (7) yield J(σ ∗) � J(σ ε ).
Since ε is arbitrary, by letting ε to zero, noting the approximation property of the sequence σ ε

in (8), and the continuity result in lemma 2.2, we deduce that J(σ ∗) � J(σ ) for any σ ∈ A.
This shows the desired assertion for 	(σ ) = 1

2‖σ‖2
H1(�)

.
Next we consider the case 	(σ ) = |σ |TV(�). For any σ ∈ A, lemma 2.4 implies the

existence of a sequence {σ ε} ⊂ C∞(�) such that
∫
�

|σ ε − σ | dx < ε and | ∫
�

|∇σ ε | dx −∫
�

|Dσ || < ε. Next we define σ̃ε = P[λ,λ−1]σ
ε , where the operator P[λ,λ−1] denotes pointwise

projection. Since ∇σ̃ ε = ∇σ εχ�ε
(with the set �ε = {x ∈ � : λ � σ ε � λ−1}), which

is uniformly bounded, and thus σ̃ ε ∈ A ∩ W 1,∞(�). With the choice σh = Ihσ̃
ε ∈ Vh, the

minimizing property of σ ∗
h ∈ Ah gives Jh(σ

∗
h ) � Jh(Ihσ̃

ε ) for any ε > 0. By the approximation
property of the operator Ih in (4) and the fact that σ̃ ε ∈ W 1,∞(�), we deduce

lim
h→0

Ihσ̃
ε = σ̃ ε in W 1,1(�).

9
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Letting h to zero, and appealing to lemma 3.1 and (7) yield J(σ ∗) � J(σ̃ ε ). We observe the
following approximation properties of the sequence σ̃ ε ,∫

�

|∇σ̃ ε | dx =
∫

�ε

|∇σ ε | dx �
∫

�

|∇σ ε | dx �
∫

�

|Dσ | + ε,∫
�

|σ̃ ε − σ | dx �
∫

�

|σ ε − σ | dx < ε,

where the last line follows from the contraction property of the operator P[c0,c1]. By letting ε

to zero and the continuity result in lemma 2.2, we deduce J(σ ∗) � J(σ ) for any σ ∈ A, i.e.,
σ ∗ is indeed a minimizer to the functional J(σ ). This concludes the proof of the theorem. �

Remark 3.2. A close inspection of the proof of theorem 3.1 indicates that with minor
modifications the result holds also for the continuum model, provided that the input current
j satisfies a certain regularity condition so that an analogue of theorem 2.1 is valid, cf [21,
appendix A]. Further, the analysis can be easily adapted to multi-parameter models, e.g.,
	(σ ) = 1

2‖σ‖2
H1(�)

+ γ ‖σ‖L1(�).

4. Convergence for smooth curved domains

Now we turn to the convergence analysis of finite element approximations on convex smooth
curved domains. In the finite element literature, there are several different ways to treat curved
domains, e.g., isoparametric elements [10] and curved elements [3]. In EIT imaging algorithms,
we usually approximate the domain � with a polyhedral domain �h (with its boundary denoted
by �h), and solve the forward problem (1) directly on the polyhedral domain �h, with the
resulting solution taken as the desired approximation. That is, all computations are performed
on a polyhedral domain �h. Such a discretization strategy has been routinely employed in the
implementation of EIT imaging techniques, but to the best of our knowledge, it has not been
rigorously justified.

Throughout, the triangulation Th is shape regular and quasi-uniform and it consists of
simplicial elements, and the finite element space Vh is the canonical piecewise linear finite
element space defined on Th. Further, we make the following assumption on the domain � and
the polyhedral approximation �h (with their boundaries being � and �h, respectively). The
finite element space Vh will be used to discretize both the forward model and the conductivity
distribution.

Assumption 4.1. The domain � is convex with aC2 boundary �. The approximating polyhedral
domain �h is also convex, and the vertices of �h are on the boundary �.

Remark 4.1. The convexity and smoothness in assumption 4.1 are mainly for three-
dimensional (3D) domains. In the two-dimensional (2D) case, the discussions below work
for domains with a piecewise smooth boundary; see e.g. [6]. That is, the convexity of the
domain is not required then.

To ease the exposition, we introduce some further notation. By assumption 4.1, clearly
there holds the relation �h ⊂ �. Due to the convexity of the domain �h, we can define a
projection operator φh by

φh : �\�h �→ �h,

φh(x) = argminz∈�h
|x − z|.

We denote by φ1
h and φ2

h the map φh restricted to the interior domain �\�h and the boundary
�, respectively, i.e., φ1

h = φh|�\�h
and φ2

h = φh|� . Next let Sh be any finite element surface

10
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(of the triangulation Th) of the polyhedral domain �h lying on �h, and Th be the finite element
to which Sh belongs. We denote the pair by (Sh, Th), and by (φ1

h )−1(Sh) the preimage of Sh

under φ1
h . Then there holds �\�h ⊂ ∪Sh (φ

1
h )−1(Sh). Further for any interior point xh to the

surface Sh (understood elementwise), we can define a unit outward normal vector nxh through
xh, which is perpendicular to Sh. Due to the convexity of the domain �, the outward normal
vector nxh intersects the boundary � uniquely at a point x. This defines a map

ψh : ∪Sh int Sh �→ �,

ψh(xh) = x.

Furthermore, by the convexity of the domain �h, �h lies on only one side of any plane that
contains Sh, and therefore, φ2

h (ψh(xh)) = xh, xh ∈ int Sh. For any surface patch e ⊂ �, there
holds

φ2
h (e) = ∪Se,h, (9)

where Se,h = Sh ∩ φ2
h (e). We denote the subset ∪x∈int Se,hψh(x) ⊂ e by �h(e), which will be

taken as an approximation to the surface electrode e in the convergence analysis.
The following lemma provides some estimates on the domain approximation under

assumption 4.1. These estimates are crucial to subsequent convergence analysis.

Lemma 4.1. Let assumption 4.1 be fulfilled. Then for any small h, the following statements
hold.

(i) The distance d(�, �h) := sup
x∈�

inf
xh∈�h

|x − xh| between the boundaries � and �h converges

to zero at d(�, �h) � Ch2.
(ii) The unit outward normal vector n(φ2

h (x)) for φ2
h (x) to �h converges to that at x to the

boundary � at |n(x) − n(φ2
h (x))| � Ch.

(iii) The measure |�h| converges to |�|, i.e., ||�| − |�h|| � Ch.

Proof. We discuss only the 3D case, since the treatment of the 2D case is straightforward
(cf [6]). By the C2 regularity of the boundary � from assumption 4.1, the unit outward
normal vector n : � �→ S

2 is Lipschitz continuous with a Lipschitz constant L, i.e.,
|n(x) − n(y)| � L|x − y|.

Now for any fixed x ∈ �, d(x, �h) in assertions (i) and (ii) does not depend on the choice
of the coordinate system, and hence we may assume n(x) = (0, 0, 1)t. The implicit function
theorem ensures the existence of a neighborhood Nx ⊂ � of x such that x3 = f (x1, x2) in
Nx for some f ∈ C2. In particular, we many choose the set Nx = {z ∈ � : |z − x| < L−1}.
To see this, it suffices to show that any line parallel to the normal vector n(x) = (0, 0, 1)t

intersects Nx at most once, which we prove by contradiction. Suppose that the boundary � is
defined by F(x) = 0. The definition of Nx implies that for any z ∈ Nx, |n(z) − n(x)| � 1,
i.e., n(z) · n(x) � 1

2 and hence ∂F
∂x3

|z > 0. Now assume the contrary, i.e., there are two points
(x1, x2, x̃3) and (x1, x2, x̂3) in Nx with x̃3 < x̂3. The tangent plane at point x̃ := (x1, x2, x̃3) is
given by

{z = (z1, z2, z3) : (z − x̃) · ∇F(x̃) = 0}.
By the choice of the outward normal n(x̃) and the convexity of the domain �, the surface �

lies below the tangent plane, i.e., (z − x̃) · ∇F(x̃) � 0 for all z ∈ �, which contradicts the
strictly reverse inequality for the point (x1, x2, x̂3). This shows the desired assertion on the
choice of the neighborhood Nx.

Note that for any z ∈ Nx, we have n(z) · n(x) > 1
2 and hence f 2

1 (z) + f 2
2 (z) <

1, where fi = ∂ f
∂xi

, i = 1, 2. Hence there holds |x − z|2 = |x1 − z1|2 +|x2 − z2|2 +| f (x1, x2)−
11
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f (z1, z2)|2 and by the mean value theorem, f (x1, x2) − f (z1, z2) = (x1 − z1) f1(ξ1) +
(x2 − z2) f2(ξ2), where the point (ξ1, ξ2) lies on the line segment from (x1, x2) to (z1, z2).
Consequently, | f (x1, x2) − f (z1, z2)|2 � 2(|x1 − z1|2 + |x2 − z2|2). Moreover |x − z|2 �
3(|x1−z1|2+|x2−z2|2), and we can conclude that the set {(y1, y2) : |x1−y1|2+|x2−y2|2 � 1

3L2 }
is a subset of the projection of the set Nx to the x1–x2 plane.

Now suppose that h is sufficiently small. Consider the projection of x onto the x1–x2 plane,
which intersects some triangle �ABC, with A, B,C ∈ Nx being vertices on the polyhedral
boundary �h. Therefore, there is a surface patch N̂x ⊂ Nx (with x ∈ N̂x) and �ABC can
be respectively represented by (x1, x2, f (x1, x2)) and (x1, x2, fh(x1, x2)) with f and fh being
C2 continuous and affine, respectively. We note that by the construction in the preceding
paragraph, such a representation also exists for the neighboring elements. Let n(A) be the unit
outward normal vector at the vertex A ∈ N̂x to the surface �, and nABC be that of the triangle
�ABC. Then there holds

n(A) = (
f 2
1 + f 2

2 + 1
)− 1

2 (− f1,− f2, 1)|A,

nABC = (
f 2
1,h + f 2

2,h + 1
)− 1

2 (− f1,h,− f2,h, 1)|ABC,

where fi,h = ∂ fh

∂xi
|ABC, i = 1, 2. Now the C2 regularity of f yields

x3,B − x3,A = f (x1,B, x2,B) − f (x1,A, x2,A)

= f1|A(x1,B − x1,A) + f2|A(x2,B − x2,A) + O(h2).

Consequently, the inner product |n(A) · −→
BA| can be bounded by

|n(A) · −→BA| = ∣∣( f 2
1 + f 2

2 + 1
)− 1

2 (− f1,− f2, 1)
∣∣
A · [x1,B−x1,A x2,B−x2,A x3,B−x3,A]

∣∣ � Ch2.

Similarly, one can deduce |n(A) · −→
CA| � Ch2. By the quasi-uniformity of the triangulation

Th, the angle ∠BAC is strictly bounded from below by zero, |AB| ≈ h and |AC| ≈ h, and
hence the inner product between n(A) and any unit vector in the plane ABC is of the order
O(h). The normal vector n(A) can be expressed as n(A) = αnABC + n⊥

ABC with n⊥
ABC ⊥ nABC

and α ∈ (0, 1) (due to the choice of orientation). Taking inner products both sides with n⊥
ABC

yields

n(A) · n⊥
ABC = |n⊥

ABC|2
i.e., |n⊥

ABC| = O(h) and α = 1 − O(h). Hence, |n(A) − nABC|2 = (1 − α)2 + |nABC|2 = O(h2),
i.e., |n(A) − nABC| � Ch. It follows immediately from this estimate that

| f1(A) − f1,h| � Ch and | f2(A) − f2,h| � Ch.

With these preliminaries, now we can prove the assertions.
Proof of assertion (i). For any point x̄ = (x1, x2, f (x1, x2)) ∈ �ABC, there holds

|x1 − x1,A| + |x2 − x2,A| � Ch, and further

f (x1, x2) = f (x1,A, x2,A) + (x1 − x1,A) f1(A) + (x2 − x2,A) f2(A) + O(h2),

fh(x1, x2) = fh(x1,A, x2,A) + (x1 − x1,A) f1,h + (x2 − x2,A) f2,h.

Upon noting the identity f (x1,A, x2,A) = fh(x1,A, x2,A), we deduce

| f (x1, x2) − fh(x1, x2)| � |x1 − x1,A|| f1(A) − f1,h| + |x2 − x2,A|| f2(A) − f2,h| + Ch2 � Ch2.

Therefore d(x̄, �h) � | f (x1, x2) − fh(x1, x2)| � Ch2 and assertion (i) follows.
Proof of assertion (ii). It follows from the Lipschitz continuity of the unit normal vector

n(x) that

|n(x) − nABC| � |n(x) − n(A)| + |n(A) − nABC| � L|x − xA| + Ch � Ch. (10)

12
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Now we distinguish the following cases. Case (a): φ2
h (x) ∈ �ABC, then the assertion follows

directly from (10) and the fact that n(φ2
h (x)) = nABC. Case (b): φ2

h (x) /∈ �ABC. By part (i),
|x − φ2

h (x)| = d(x, �h) � Ch2, i.e., φ2
h (x) lies within an O(h2) neighborhood of the point x.

Let x̄ ∈ �ABC be the intersection point defined by the projection through the point x ∈ � onto
the x1–x2 plane. Then by the triangle inequality, |x̄ − φ2

h (x)| � Ch2. Then the C2 regularity of
f yields |x − φ̌2

h (x)| � Ch2, where φ̌2
h (x) denotes the pull-back of the orthogonal projection of

φ2
h (x) (onto the x1–x2 plane) to the boundary �. The Lipschitz continuity of the normal vector,

(10) and the triangle inequality yield∣∣n(x) − n
(
φ2

h (x)
)∣∣ �

∣∣n(x) − n
(
φ̌2

h (x)
)∣∣ + ∣∣n(

φ̌2
h (x)

) − n
(
φ2

h (x)
)∣∣ � Ch.

This completes the proof of assertion (ii).
Proof of assertion (iii). Here we first consider a local patch. For any subset N ⊂ Nx

(with the choice n(x) = (0, 0, 1)t) with a boundary ∂N of finite perimeter, let Nh ⊂ �h be the
approximation ofN which consists of triangles with all vertices lying onN , andNx1,x2 ⊂ R

2 be
the orthogonal projection of Nh onto the x1–x2 plane. According to the preceding construction,
the projection is well defined. Then for any (x1, x2) ∈ Nx1,x2 , (x1, x2, fh(x1, x2)) ∈ Nh

and (x1, x2, f (x1, x2)) ∈ N . Now for any triangle �ABC ⊂ Nh, fi,h|�ABC is constant, and
consequently

| fi|(x1,x2 ) − fi,h|(x1,x2 )| � | fi|(x1,x2 ) − fi|A| + | fi|A − fi,h|A| � Ch.

Let Ñ = {(x1, x2, f (x1, x2)) : (x1, x2) ∈ Nx1,x2} ⊂ N . Then

|Ñ | =
∫
Nx1 ,x2

√
f 2
1 + f 2

2 + 1 dx1 dx2 and |Nh| =
∫
Nx1 ,x2

√
f 2
1,h + f 2

2,h + 1 dx1 dx2,

where the derivatives fi,h should be understood elementwise. Therefore,

||Ñ | − |Nh|| �
∫
Nx1 ,x2

| f1 − f1,h| + | f2 − f2,h| � Ch.

Moreover, since the mesh size is h, and the surface � is C2, the set N \Ñ is contained in the
set {x : d(x, ∂N ) � Ch}. Consequently, we have

||N | − |Nh|| � ||Ñ | − |Nh|| + |N \Ñ | � Ch.

Now we estimate the approximation of the whole boundary. Since the boundary � is compact
and � ⊂ ∪x∈�Nx, by the Heine–Borel theorem, there exists a finite number of points {xi}n

i=1
such that � ⊂ ∪xiNxi . Let N 1 = Nx1 , N 2 = Nx2\N 1, N i = Nxi\ ∪i−1

j=1 N j, i = 3, . . . , n.
Then each set Nxi has a boundary of finite measure. Clearly there holds |�| = ∑

i |N i| and
|�h| �

∑
i |N i

h|. Now by the nonexpansiveness of the map φ2
h , there holds |�h| � |�|. Now

assertion (iii) follows from

|�| − |�h| �
∑

i

∣∣|N i| − ∣∣N i
h

∣∣∣∣ � Ch.

This completes the proof of the lemma. �

Remark 4.2. The quasi-uniformity of the mesh is essential for lemma 4.1. One can find a
counterexample on the approximation of surface area in [16, section 623] in the absence of
the quasi-uniformity condition; see also [16, sections 624 and 627] for related discussions.
Further, the constant C in lemma 4.1 depends on the curvature of the boundary.

With the help of lemma 4.1, we can show the following properties of the maps φ1
h , φ2

h
and �h defined at the beginning of this section, which are crucial for the convergent analysis
below.
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Lemma 4.2. Let assumption 4.1 be fulfilled. Then there exists a function εh → 0 as h → 0
such that the maps φ1

h , φ2
h and �h satisfy:

(i) For any element Sh, there holds |(φ1
h )−1(Sh)|
|Th| � εh.

(ii) For any subset e ⊂ �, there holds |φ2
h (e)| � |e|, |φ2

h (e)| → |e| and |φ2
h (e)| � |�h(e)| �

(1 + εh)|φ2
h (e)|.

Proof. By definition, there holds |φ1
h (x) − x| � d(�, �h), and (φ1

h )−1(Sh) ⊂ {x ∈ � \ �h :
d(x, Sh) � d(�, �h)}. Hence, for any Sh, the measure of the set {x ∈ � \ �h : d(x, Sh) �
d(�, �h)} satisfies |{x ∈ � \ �h : d(x, Sh) � d(�, �h)}| � Chd+1, in view of lemma 4.1
(i) and the fact |Sh| ≈ hd−1, and the quasi-uniformity of Th implies |Th| ≈ hd , from which
assertion (i) follows directly.

Since the map φ2
h is nonexpansive, |φ2

h (e)| � |e| and |φ2
h (e)| = |φ2

h (�h(e))| � |�h(e)|.
Meanwhile, clearly there holds |e|− |φ2

h (e)| � |�|− |�h|, and consequently |φ2
h (e)| → |e| by

lemma 4.1 (iii). Now by lemma 4.1 (ii) we have δh = supx |nx − nφ2
h (x)| � Ch. Without loss of

generality, we can assume that φ2
h (e) ⊂ int Sh. By using a local coordinate system, let Sh be in

the x1–x2 plane (x1 axis in the 2D case). Then the set �h(e) ⊂ ψh(int Sh) can be represented
by a nonnegative function f (x1, x2) for (x1, x2) ∈ int Sh. It follows from the definition of δh

that ∣∣∣∣∣∣ ( f1, f2, 1)√
1 + f 2

1 + f 2
2

− (0, 0, 1)

∣∣∣∣∣∣ � δh,

from which it follows that f 2
1 + f 2

2 � δ2
h

1−δ2
h
. However, the area for the patch �h(e) is given by

|�h(e)| =
∫

φ2
h (e)

√
1 + f 2

1 + f 2
2 dx dy �

⎛⎝1 + δh√
1 − δ2

h

⎞⎠ ∣∣φ2
h (e)

∣∣.
This shows the second assertion. Then εh can be properly chosen to satisfy both (i)
and (ii). �

We shall also need the following lemma.

Lemma 4.3. Let p � 1 and the domain � divide into n disjoint open subdomains {�i},
with a Lipschitz interface between every neighboring subdomains. Then u|�i ∈ W 1,p(�i) and
u ∈ C(�) imply u ∈ W 1,p(�).

Proof. It suffices to consider the case n = 2, i.e., two domains �1 and �2 with the interface
being �1,2. We define functions v j, j = 1, . . . , d, by v j(x) = ∂u

∂x j
χ�1∪�2 . Then for any

φ ∈ C∞
0 (�), we have∫

�

v jφ dx =
∫

�1

v jφ dx +
∫

�2

v jφ dx = −
∫

�1

uφx j dx −
∫

�2

uφx j dx +
∫

�1,2

[uφ]nxj ds,

where [·] denotes the jump across the interface �1,2 and nxj is the jth component of the unit
outward normal vector to the boundary ∂�1. By the continuity of u, the jump term on the
interface �1,2 vanishes identically, and thus

∫
�

v jφ dx = − ∫
�

uφx j dx, i.e., v j is the weak
derivative of u. Clearly, the function v j belongs to the space Lp(�). This concludes the proof
of the lemma. �
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The finite element solution is only defined on the domain �h, whereas the true solution
is defined on the domain �. In order to compare them, we introduce an extension operator
j : �h �→ � as follows:

jvh(x) =
{

vh(x), x ∈ �h,

vh(φh(x)), x ∈ �\�h,
∀vh ∈ Vh. (11)

The extension operator j satisfies the following estimate.

Lemma 4.4. Let p � 1 and assumption 4.1 be fulfilled. Then there holds

‖jvh‖W 1,p(�\�h) � Cε
1
p

h ‖vh‖W 1,p(�h) ∀vh ∈ Vh.

Proof. Clearly, jvh ∈ C(�) and the projection operator φh is nonexpansive, i.e.,
|φh(x) − φh(y)| � |x − y|. Thus for any x ∈ �\�h with φh(x) ∈ Sh ⊂ Th, Th ∈ Th,
there holds

|∇jvh(x)| = lim sup
y→x

|jvh(x) − jvh(y)|
|x − y|

� lim sup
y→x

φh (y)�=φh (x)

|vh(φh(x)) − vh(φh(y))|
|φh(x) − φh(y)| � ‖∇vh‖L∞(Sh),

and

|jvh(x)| = |vh(φh(x))| � ‖vh‖L∞(Sh ).

Further, ‖∇vh‖L∞(Sh ) � ‖∇vh‖L∞(Th) and ‖vh‖L∞(Sh) � ‖vh‖L∞(Th), and thus,

‖∇jvh‖p
Lp((φ1

h )−1(Sh))
� |(φ1

h )−1(Sh)|‖∇vh‖p
L∞(Th)

,

‖jvh‖p
Lp((φ1

h )−1(Sh ))
� |(φ1

h )−1(Sh)|‖vh‖p
L∞(Th)

. (12)

Now for the element Th ∈ Th, we consider an affine transformationF : T̂ �→ Th,F (x̂) = Jx̂+b,
where T̂ is the reference element. The quasi-uniformity of the triangulation Th implies [10]

|det(J)| = |Th|/|T̂ | ≈ hd, ‖J‖ ≈ h, ‖J−1‖ ≈ h−1. (13)

where ≈ means being of the same order, and ‖ · ‖ is the matrix spectral norm. Then by a
change of variable, chain rule and (13), we deduce that for any s � 0

|̂v|W s,p(T̂ ) ≈
{

hs− d
p |v|W s,p(Th), 1 � p < ∞,

hs|v|W s,p(Th), p = ∞.

Consequently, we have

|vh|p
W 1,∞(Th)

≈ h−p|̂vh|p
W 1,∞(T̂ )

≈ h−p|̂vh|p
W 1,p(T̂ )

≈ h−d |vh|p
W 1,p(Th)

≈ 1

|Th| |vh|p
W 1,p(Th)

,

|vh|p
L∞(Th)

≈ |̂vh|p
L∞(T̂ )

≈ |̂vh|p
Lp(T̂ )

≈ h−d |vh|p
Lp(Th)

≈ 1

|Th| |vh|p
Lp(Th)

.

This together with (12) yields

‖∇jvh‖p
Lp((φ1

h )−1(Sh))
� C

∣∣(φ1
h

)−1
(Sh)

∣∣
|Th| ‖∇vh‖p

Lp(Th)
,

‖jvh‖p
Lp((φ1

h )−1(Sh ))
� C

∣∣(φ1
h

)−1
(Sh)

∣∣
|Th| ‖vh‖p

Lp(Th)
.

Now summing overall Sh and part (i) of lemma 4.2 yield the desired assertion. �
The next result estimates the error of the boundary term.
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Lemma 4.5. Let assumption 4.1 be fulfilled. Then for any vh ∈ Vh, a subset eh ⊂ int Sh, and
ẽh = ψh(eh), there holds∣∣∣∣∫

eh

vh ds −
∫

ẽh

jvh ds

∣∣∣∣ � εh‖vh‖L1(eh).

Proof. By the continuity of the functions vh and jvh, Riemann and Lebesgue integration
coincides. We show the assertion using the definition of Riemann integration. Let ∪i pi be a
partition of ẽh. Then ∪iφ

2
h (pi) forms a partition of eh. Since the map φ2

h is nonexpansive, the
norm of the partition {φ2

h (pi)} tends to zero as that of {pi} goes to zero. For any choice of
{xi ∈ pi}, there holds∣∣∣∣∫

eh

vh ds −
∫

ẽh

jvh ds

∣∣∣∣ = lim
n→∞

∣∣∣∣∣∑
i

(
vh

(
φ2

h (xi)
)∣∣φ2

h (pi)
∣∣ − jvh(xi)|pi|

)∣∣∣∣∣
= lim

n→∞

∣∣∣∣∣∑
i

vh
(
φ2

h (xi)
)(∣∣φ2

h (pi)
∣∣ − |pi|

)∣∣∣∣∣ .
By part (ii) of lemma 4.2, there holds ||φ2

h (pi)| − |pi|| � εh|φ2
h (pi)|, which concludes the

proof. �

Remark 4.3. An inspection of the proof indicates that the lemma is valid for any function
continuous over the domain �h.

We shall also need a Riesz projection Rh, which is dependent of the domain �h.

Lemma 4.6. Let the Riesz projection Rh : H1(�) �→ Vh be defined by∫
�h

∇Rhv · ∇vh dx +
∫

�h

Rhvvh dx =
∫

�h

∇v · ∇vh dx +
∫

�h

vvh dx ∀vh ∈ Vh.

Then the operator Rh satisfies the following estimate

lim
h→0

‖jRhv − v‖H1(�) = 0 ∀v ∈ H1(�).

Proof. Clearly, by the definition of the space H1(�), there holds

‖jRhv − v‖2
H1(�)

= ‖Rhv − v‖2
H1(�h)

+ ‖jRhv − v‖2
H1(�\�h)

.

It suffices to estimate the two terms. We estimate the first term by a density argument. By Céa’s
lemma and the definition of Riesz projection, ‖Rhv−v‖H1(�h) � infvh∈Vh ‖vh −v‖H1(�h). Then
following [10, theorem 3.2.3] we deduce that for any v ∈ C∞(�), there holds

‖v − Ihv‖H1(�h) � Ch|�h| 1
2 ‖v‖W 2,∞(�h),

where C does not depend on �h. Now for any fixed v ∈ H1(�), by the density of C∞(�)

in H1(�), there exists vε ∈ C∞(�) with ‖vε − v‖H1(�) � ε for any ε > 0. Hence with the
choice vh = Ihv

ε in Céa’s lemma, there holds limh→0 ‖Rhv − v‖H1(�h) = 0. Meanwhile, by
the triangle inequality we have

‖jRhv − v‖H1(�\�h) � ‖jRhv‖H1(�\�h) + ‖v‖H1(�\�h)

� Cε
1
2

h ‖Rhv‖H1(�h) + ‖v‖H1(�\�h) → 0,

where the last term tends to zero by Lebesgue dominated convergence theorem [15]. �
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Next we establish an analogue of lemma 3.1 for the solution (uh,Uh) ∈ Hh :=
H1(�h) ⊗ R

L
� to the discrete variational problem (on the polyhedral domain �h):∫

�h

σh∇uh · ∇vh dx +
L∑

l=1

z−1
l

∫
el,h

(uh − Uh,l )(vh − Vl ) ds =
L∑

l=1

IlVl, ∀(vh,V ) ∈ Hh. (14)

There are several possible choices of the discrete surface eh,l , which is a polyhedral
approximation to the surface patch el (occupied by the electrode). A straightforward definition
of eh,l would be el,h = φh(el ). Here we let eh,l = φh(�h(el )). We note that in practice, the
surface eh,l can be chosen to be the union of a collection of polyhedral surfaces only so
as to avoid integration over a curved surface; and the analysis below remains valid for this
case. Next we denote ẽl,h = ψh(el,h) ⊂ el . By assumption 4.1(b), the measure |el\ẽl,h| is
bounded by |�| − |�h|, with a limit zero as h goes to zero. By the Lax–Milgram theorem,
for each fixed σh, there exists a unique solution (uh,Uh) ∈ Hh to the discrete variational
problem (14), and it satisfies the following a priori error estimate ‖(uh,Uh)‖Hh � C‖I‖.
Hence by lemma 4.4, the sequence {(juh,Uh)} is uniformly bounded in H independent of
h. Now we can state an important lemma on the convergence of the discrete forward map
σh �→ (juh(σh),Uh(σh)) ∈ Hh.

Lemma 4.7. Let {σh} ⊂ A and (uh(σh),Uh(σh)) solve the discrete variational problem (14).
If jσh converges to σ ∈ A in L1(�), then the sequence {(juh(σh),Uh(σh))} converges to
(u(σ ),U (σ )) in H.

Proof. For simplicity, we denote the extensions of σh, uh and vh from �h to � by σ̃h = jσh,
ũh = juh(σh), ṽh = jvh, and ūh = jRhu. Then the assumption σh ∈ Ah ⊂ Vh, i.e., c0 � σh � c1,
and a priori estimate for uh, lemmas 4.4 and 4.3, imply that the sequence {ũh(σh)} is uniformly
bounded in H1(�).

First we rewrite the discrete variational formulation (14) as∫
�

σ̃h∇ũh · ∇ṽh dx +
L∑

l=1

z−1
l

∫
el

(ũh − Uh,l )(ṽh − Vl ) ds =
∫

�\�h

σ̃h∇ũh · ∇ṽh dx +
L∑

l=1

IlVl

+
L∑

l=1

z−1
l

∫
el

(ũh − Uh,l )(ṽh − Vl ) ds

−
L∑

l=1

z−1
l

∫
el,h

(uh − Uh,l )(vh − Vl ) ds, ∀(vh,V ) ∈ Hh

and take the test function (vh,V ) = (Rhu − uh,U − Uh). Next we subtract it from
(2) with the test function (v,V ) = (ūh − ũh,U − Uh) to get the identity for the error
(w,W ) = (u − ūh,U − Uh):∫

�

σ̃h|∇w|2 dx +
L∑

l=1

z−1
l

∫
el

|w − Wl|2 ds �
∫

�

(σ̃h − σ )∇u · ∇(ūh − ũh) dx︸ ︷︷ ︸
I

+
∫

�

σ̃h∇w · ∇(u − ūh) dx︸ ︷︷ ︸
II

+
∫

�\�h

σ̃h∇ũh · ∇(ūh − ũh) dx︸ ︷︷ ︸
III

+
L∑

l=1

z−1
l

∫
el

(w − Wl )(u − ūh) ds︸ ︷︷ ︸
IV

+
L∑

l=1

z−1
l

[∫
el

(ũh − Uh,l )((ūh − ũh) − Wl ) ds −
∫

el,h

(uh − Uh,l )((Rhu − uh) − Wl ) ds

]
︸ ︷︷ ︸

V

.
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Next we estimate the five terms (I–V) on the right-hand side. For the first term I, by the
generalized Hölder’s inequality we have

|I| � ‖σ̃h − σ‖Lp(�)‖∇u‖Lq(�)‖∇(ūh − ũh)‖L2(�),

where the exponent q is from theorem 2.1, and the exponent p > 0 satisfies 1
p + 1

q = 1
2 . The

factor ‖∇(ū− ũh)‖L2(�) is uniformly bounded due to the bounds on uh and Rhu and lemma 4.4.

Meanwhile, there holds ‖σ̃h − σ‖Lp(�) � C‖σ̃h − σ‖
1
p

L1(�)
→ 0. Hence, the first term I → 0

as h → 0. For the second term II, in view of lemma 4.6 and the uniform bound of the discrete
admissible set Ah, we have

|II| � ‖σ̃h‖L∞(�)‖∇w‖L2(�)‖∇(u − ūh)‖L2(�) → 0.

Similarly, lemma 4.4 and uniform boundedness of ‖∇uh‖L2(�) and ‖∇(Rhu − uh)‖L2(�) yield

|III| � C‖σ̃h‖L∞(�\�h)‖∇ũh‖L2(�\�h)‖∇(ūh − ũh)‖L2(�\�h)

� Cεh‖∇uh‖L2(�h )‖∇(Rhu − uh)‖L2(�h) → 0.

Next we consider the boundary terms. By the trace theorem [15] and the approximation
property of Rh in lemma 4.6, we get

|IV| � ‖w − Wl‖L2(el )‖u − ūh‖L2(el ) � C‖w − Wl‖L2(el )‖u − ūh‖H1(�) → 0.

Lastly, for the term V, it suffices to consider the quantity
∫

el,h
uhvh ds − ∫

el
ũhṽh ds with

vh = Rhu − uh, and the remaining terms can be bounded similarly. By letting ẽl,h = ψh(el,h),
the triangle inequality and lemma 4.5, we deduce that∣∣∣∣∫

el,h

uhvh ds −
∫

el

ũhṽh ds

∣∣∣∣ �
∣∣∣∣∫

el,h

uhvh ds −
∫

ẽl,h

ũhṽh ds

∣∣∣∣ +
∣∣∣∣∫

el\ẽl,h

ũhṽh ds

∣∣∣∣
� εh‖uhvh‖L1(el,h) + ‖ũhṽh‖L1(el\ẽl,h)

� εh‖uhvh‖L1(el,h) + ‖ũhṽh‖L1(el\ẽl,h) =: I1 + I2.

It remains to bound the terms I1 and I2. By Sobolev embedding theorem [15] and uniform
boundness of uh in H1(�h), ‖uhvh‖L1(el,h) is uniformly bounded for all h, hence I1 → 0 as
h → 0. By Sobolev embedding theorem, H1(�) embeds continuously into L4(�) (d = 2, 3),
and thus by Hölder’s inequality, we deduce ũhṽh ∈ L2(�). Hence we can estimate the term I2

by Hölder’s inequality, the trace theorem and the uniform boundedness of ũh and ṽh in H1(�)

as follows

I2 � ‖ũhṽh‖L2(el\ẽl,h )|el \ ẽl,h| 1
2

� ‖ũh‖L4(el )‖ṽh‖L4(el )|el \ ẽl,h| 1
2

� C‖ũh‖H1(�)‖ṽh‖H1(�)|el \ ẽl,h| 1
2 → 0.

Now lemma 4.7 follows directly from the preceding estimates. �
Finally, we analyze the discrete optimization problem for curved domains:

min
σh∈Ah

{
Jh(σh) = 1

2‖Uh(σh) − U δ‖2 + η	h(σh)
}
, (15)

where the discrete approximation Uh(σh) is defined by the finite element system (14), and the
discrete penalty functional 	h(σh) is defined by

	h(σh) =
{ 1

2‖σh‖2
H1(�h )

, smoothness,
|σh|TV(�h), total variation.

We observe that the penalty functional is defined only on the polyhedral approximation �h,
so the discrete optimization problem involves only computations on the approximate domain
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�h as well. Like before, the existence of a minimizer σ ∗
h ∈ Ah to the discrete functional

Jh(σh) follows immediately from the compactness and norm equivalence in finite-dimensional
spaces.

We now can show the convergence of the finite element approximation for curved domains.

Theorem 4.1. Let assumption 4.1 be fulfilled and {σ ∗
h }h>0 be a sequence of minimizers to

problem (15). Then the sequence {jσ ∗
h }h>0 contains a convergent subsequence to a minimizer

of problem (3) as the mesh size h tends to zero.

(a) The convergence is weakly in H1(�), if 	h(σh) = 1
2‖σh‖2

H1(�h)
.

(b) The convergence is in L1(�), if 	h(σh) = |σh|TV(�h).

Proof. We note that the constant function σh = 1 (with jσh = 1) lies in the admissible set Ah

for any h. Therefore, the sequence {	h(σ
∗
h )} is uniformly bounded. Next

	(jσ ∗
h ) − 	h(σ

∗
h ) =

{ 1
2‖jσ ∗

h ‖2
H1(�\�h)

, case (a),
|jσ ∗

h |TV(�\�h), case (b).

Note that the function jσ ∗
h is continuous and piecewise linear, and thus the bounded variation

norm agrees with the W 1,1(�)-norm. Hence we can apply lemma 4.4 to obtain

lim sup
h→0

	(jσ ∗
h ) − 	h(σ

∗
h ) = 0.

Hence the sequence {	(jσ ∗
h )} is also uniformly bounded, and by lemma 2.3, there exists a

subsequence of {jσ ∗
h } such that jσ ∗

h → σ ∗ in L1(�). By lemma 4.7, we have Ul,h(σ
∗
h ) →

Ul(σ
∗) as h → 0. This together with the weak lower semicontinuity of norms, we deduce that

J(σ ∗) = 1
2‖U (σ ∗) − U δ‖2 + α	(σ ∗)

� lim
h→0

1
2‖Uh(σ

∗
h ) − U δ‖2 + α lim inf

h→0
	(jσ ∗

h )

� lim inf
h→0

(
1
2‖Uh(σ

∗
h ) − U δ‖2 + α	h(σ

∗
h ) + α(	(jσ ∗

h ) − 	h(σ
∗
h ))

)
� lim inf

h→0
Jh(σ

∗
h ) + lim sup

h→0
α(	(jσ ∗

h ) − 	h(σ
∗
h )) = lim inf

h→0
Jh(σ

∗
h ),

Now we proceed as in the proof of theorem 3.1 by considering cases (a) and (b) separately.
For case (a), by the density of C∞(�) in H1(�), we may assume σ ∈ C∞(�) ∩ A, then
Ihσ ∈ Ah. Further,

‖jIhσ − σ‖2
H1(�)

= ‖jIhσ − σ‖2
H1(�h)

+ ‖jIhσ − σ‖2
H1(�\�h)

� ‖Ihσ − σ‖2
H1(�h )

+ 2(‖jIhσ‖2
H1(�\�h)

+ ‖σ‖2
H1(�\�h)

)

� ‖Ihσ − σ‖2
H1(�h )

+ Cεh‖Ihσ‖H1(�h) + 2‖σ‖2
H1(�\�h)

→ 0.

Then by lemma 4.7, Uh(Ihσ ) → U (σ ) and thus J(σ ) = limh→0 Jh(Ihσ ) �
lim infh→0 Jh(σ

∗
h ) = J(σ ∗), i.e., σ ∗ is a minimizer to the continuous functional.

Next consider case (b). For any fixed σ ∈ A, by lemma 2.4 and the constructions in the
proof of theorem 3.1, for any ε > 0, there exists σ ε ∈ C(�) such that∫

�

|σ ε − σ | dx < ε and

∣∣∣∣∫
�

|∇σ ε | −
∫

�

|Dσ |
∣∣∣∣ < ε.

Then σ̃ ε = P[c0,c1](σ
ε ) ∈ W 1,∞(�) ∩ A. We take σh = Ihσ̃

ε . Then by lemma 4.4 there holds

‖jIhσ̃
ε − σ̃ ε‖W 1,1(�) = ‖jIhσ̃

ε − σ̃‖W 1,1(�h) + ‖jIhσ̃
ε − σ̃ ε‖W 1,1(�\�h)

� ‖Ihσ̃
ε − σ̃ ε‖W 1,1(�h) + ‖jIhσ̃

ε‖W 1,1(�\�h) + ‖σ̃ ε‖W 1,1(�\�h)

� ‖Ihσ̃
ε − σ̃ ε‖W 1,1(�h) + Cεh‖Ihσ̃

ε‖W 1,1(�h) + ‖σ̃ ε‖W 1,1(�\�h) → 0.
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(a) (b) (c)

Figure 1. (a) The domain �, and the coarse mesh (h1), where the red lines denote the
electrodes. (b), (c): the profile of the exact conductivity distribution σ † for examples 1
and 2.

Then by lemma 4.7, Uh(Ihσ̃
ε ) → U (σ̃ ε ) and thus J(σ̃ ε ) = limh→0 Jh(Ihσ̃

ε ) �
lim infh→0 Jh(σ

∗
h ) = J(σ ∗). The rest is identical with the proof in theorem 3.1. This concludes

the proof of the theorem. �

5. Numerical experiments

Now we present some numerical results to verify the convergence theory. The setup of the
numerical experiments is as follows. The domain � is the unit disc centered at the origin, i.e.,
� = {x = (x1, x2) : x2

1 + x2
2 < 1}. There are 16 electrodes {el}L

l=1 uniformly distributed along
the boundary �, each of the length π/16, thus occupying one half of the boundary �; see
figure 1(a) for a schematic illustration of the domain and electrodes. The contact impedances
{zl}L

l=1 on the electrodes {el}L
l=1 are all set to unit, and the background conductivity σ0 is taken

to be σ0 ≡ 1. For each experiment, we measure the electrode voltages U for five sinusoidal
input currents. Then the noisy data U δ is generated by adding componentwise Gaussian noise
to the exact data U (σ †) (with σ † being the physical conductivity) as follows

U δ
i = Ui(σ

†) + ε max
i

|Ui(σ
†)|ξi, i = 1, . . . , 16,

where ε is the noise level, and {ξi} follow the standard normal distribution. We employ four
quasi-uniform triangulations, with a mesh size of h1 = 1.27 × 10−1, h2 = 6.37 × 10−2,
h3 = 3.18 × 10−2 and h4 = 1.59 × 10−2, respectively; see figure 1 for the coarsest mesh. The
exact data U (σ †) is computed on a much finer mesh, and the discrete minimizer σ δ

α,h on the
finest mesh (with a mesh size h4) is taken as the reference continuous minimizer σ δ

α .
We consider the following two conductivity distributions.

Example 1. The true conductivity σ † is given by σ †(x) = σ0(x) + e−8(x2
1+(x2−0.55)2 ).

In this example, the true conductivity σ † is a smooth blurb; see figure 1(b) for the
profile. Hence, the H1(�)-smoothness penalty is suitable for the reconstruction. In table 1,
we present the reconstruction error e(h) = ‖σ δ

α,h − σ δ
α‖L2(�) for several different values of the

regularization parameter α; see also figure 2 for exemplary reconstructions. Here the choice of
α is not meant to be optimal, but only to study its influence on the convergence. The discrete
Tikhonov minimizer σ δ

α,h was computed by a gradient descent algorithm. We observe that
as the mesh size h decreases, the discrete minimizer σ δ

α,h converges to the reference one σ δ
α .

The convergence of the discrete minimizer σ δ
α,h tends to improve with the increase of the
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(a) (b) (c) (d)

Figure 2. Reconstructions for example 1 with ε = 1 × 10−3 and α = 5 × 10−4.

(a) (b) (c) (d)

Figure 3. Reconstructions for example 2 with ε = 1 × 10−3 and α = 5 × 10−4.

Table 1. Numerical results for example 1.

ε α e(h1) e(h2) e(h3)

0 1 × 10−4 4.02 × 10−1 1.14 × 10−1 2.78 × 10−2

1 × 10−3 5 × 10−4 3.71 × 10−1 9.59 × 10−2 2.43 × 10−2

1 × 10−3 1 × 10−3 3.32 × 10−1 8.78 × 10−2 2.56 × 10−2

1 × 10−3 5 × 10−3 2.91 × 10−1 7.18 × 10−2 1.74 × 10−2

Table 2. Numerical results for example 2.

ε α e(h1) e(h2) e(h3)

0 1 × 10−4 1.04 × 10 3.73 × 10−1 7.82 × 10−2

1 × 10−3 1 × 10−4 1.05 × 10 3.47 × 10−1 1.08 × 10−1

1 × 10−3 5 × 10−4 1.03 × 10 2.53 × 10−1 7.40 × 10−2

1 × 10−3 1 × 10−3 9.98 × 10−1 2.37 × 10−1 6.27 × 10−2

parameter α. This might be attributed to the fact that the larger is the α value, the more stable
is the Tikhonov functional Jα,h(σh), and thus the discrete minimizer σ δ

α,h is less sensitive to
the discretization error. However, a complete theoretical justification of this observation is
still missing. Further, the reconstructions in figure 2 indicate that for the coarse meshes, the
discretization error may cause fairly pronounced errors, as evidenced by spurious oscillations
around the boundary �.

Example 2. The true conductivity σ † is given by σ † = σ0 + 5χS, where χS denotes the
characteristic function of the circle S = {(x1, x2) ∈ R

2 : x2
1 + (x2 − 3/4)2 � 0.04}.

Here the true conductivity σ † is piecewise constant, cf figure 1(c) for the profile. Hence,
the total variation seminorm regularization is suitable. The numerical results are presented
in table 2; see also figure 3 for some reconstructions. The discrete Tikhonov minimizer σ δ

α,h
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was computed by an iteratively reweighted least-squares method [11]. The observations from
example 1 remain valid: the discrete minimizer σ δ

α,h converges to the reference solution as
the mesh size h decreases, and the convergence is better for larger regularization parameters.
In contrast to the smoothness penalty, the total variation reconstruction is always piecewise
constant: even the part away from the boundary is very sharply resolved, and the support
estimate of the true conductivity is very satisfactory.

6. Concluding remarks

We have provided a convergence analysis of finite element approximations of the electrical
impedance tomography with the popular complete electrode model. We investigated
regularization formulations of Tikhonov type with either the smoothness or total variation
penalty, which represent the two most popular imaging algorithms in practice. The convergence
of the minimizers to the discrete Tikhonov functional for both polyhedral and convex smooth
curved domains was established. The case of curved domains relies crucially on a careful
analysis of the errors incurred by the domain approximation. This provides partial theoretical
justifications of the so-far ad hoc discretization strategy. Our numerical experiments fully
confirmed the convergence theory.

There are several avenues for further investigation. One immediate future problem is
the convergence rates analysis, i.e., the error between the (discrete) approximation and the
true solution in terms of the noise level and mesh size. This would shed valuable insights
into the practically very important question of designing discretization strategies compatible
with the regularization parameter and noise level so as to effect optimal computational
complexity. The second is the development and analysis of an adaptive discretization strategy.
This is motivated by the following observations: for the EIT inverse problem, the conductivity
may have discontinuities, e.g., that by the total variation regularization, and thus the forward
solution has limited global regularity. Further, the ‘mixed-type’ boundary condition in the
complete electrode model causes inherent weak singularity around the electrodes. To efficiently
and accurately resolve such singularities in the forward solution, an adaptive strategy is highly
desirable.
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