
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 58.19.126.10

This content was downloaded on 01/04/2014 at 04:05

Please note that terms and conditions apply.

A fast nonstationary iterative method with convex penalty for inverse problems in Hilbert

spaces

View the table of contents for this issue, or go to the journal homepage for more

2014 Inverse Problems 30 045012

(http://iopscience.iop.org/0266-5611/30/4/045012)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/0266-5611/30/4
http://iopscience.iop.org/0266-5611
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

Inverse Problems

Inverse Problems 30 (2014) 045012 (21pp) doi:10.1088/0266-5611/30/4/045012

A fast nonstationary iterative method with
convex penalty for inverse problems in
Hilbert spaces

Qinian Jin1 and Xiliang Lu2

1 Mathematical Sciences Institute, Australian National University, Canberra,
ACT 0200, Australia
2 School of Mathematics and Statistics, Wuhan University, Wuhan 430072,
People’s Republic of China

E-mail: Qinian.Jin@anu.edu.au and xllv.math@whu.edu.cn

Received 11 December 2013, revised 10 February 2014
Accepted for publication 12 February 2014
Published 18 March 2014

Abstract
In this paper we consider the computation of approximate solutions for inverse
problems in Hilbert spaces. In order to capture the special feature of solutions,
non-smooth convex functions are introduced as penalty terms. By exploiting
the Hilbert space structure of the underlying problems, we propose a fast
iterative regularization method which reduces to the classical nonstationary
iterated Tikhonov regularization when the penalty term is chosen to be the
square of norm. Each iteration of the method consists of two steps: the first step
involves only the operator from the problem while the second step involves
only the penalty term. This splitting character has the advantage of making
the computation efficient. In case the data is corrupted by noise, a stopping
rule is proposed to terminate the method and the corresponding regularization
property is established. Finally, we test the performance of the method by
reporting various numerical simulations, including the image deblurring, the
determination of source term in Poisson equation, and the de-autoconvolution
problem.

Keywords: inverse problems in Hilbert spaces, nonstationary iterative method,
convex penalty, convergence

(Some figures may appear in colour only in the online journal)

0266-5611/14/045012+21$33.00 © 2014 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/0266-5611/30/4/045012
mailto:Qinian.Jin@anu.edu.au
mailto:xllv.math@whu.edu.cn

Inverse Problems 30 (2014) 045012 Q Jin and X Lu

1. Introduction

We consider the ill-posed inverse problems of the form

Ax = y, (1.1)

where A : X → Y is a bounded linear operator between two Hilbert spaces X and Y
whose inner products and the induced norms are denoted as 〈·, ·〉 and ‖ · ‖ respectively, which
should be clear from the context. Here the ill-posedness of (1.1) refers to the fact that the
solution of (1.1) does not depend continuously on the data which is a characteristic property
of inverse problems. In practical applications, one never has exact data, instead only noisy
data are available due to errors in the measurements. Even if the deviation is very small,
algorithms developed for well-posed problems may fail, since noise could be amplified by an
arbitrarily large factor. Therefore, regularization methods should be used in order to obtain
a stable numerical solution. One can refer to [7] for many useful regularization methods for
solving (1.1); these methods, however, have the tendency to over-smooth solutions and hence
are not quite successful to capture special features.

In case a priori information on the feature of the solution of (1.1) is available, we may
introduce a proper, lower semi-continuous, convex function � : X → (−∞,∞] such that
the sought solution of (1.1) is in D (�) = {x ∈ X : �(x) < ∞}. By taking x0 ∈ X and
ξ0 ∈ ∂�(x0), the solution of (1.1) with the desired feature can be determined by solving the
constrained minimization problem

min Dξ0�(x, x0) subject to Ax = y, (1.2)

where Dξ0�(x, x0) denotes the Bregman distance induced by � at x0 in the direction ξ0, i.e.

Dξ0�(x, x0) = �(x) − �(x0) − 〈ξ0, x − x0〉.
When only a noisy data yδ is available, an approximate solution can be constructed by the
Tikhonov-type method

xδ
α := arg min

x∈X
{‖Ax − yδ‖2 + αDξ0�(x, x0)}. (1.3)

When the regularization parameter α is given, many efficient solvers were developed to
compute xδ

α when � is the L1 or the total variation function. Unfortunately almost all these
methods do not address the choice of α which, however, is important for practical applications.
In order to use these solvers, one has to perform the trial-and-error procedure to find a
reasonable α which is time consuming. On the other hand, some iterative methods, equipping
with proper termination criteria, were developed to find approximate solutions of (1.2), see [16]
and references therein. These iterative methods have the advantage of avoiding the difficulty
for choosing the regularization parameter. However in each iteration step one has to solve a
minimization problem similar to (1.3), and overall it may take long time.

In this paper we will propose a fast iterative regularization methods for solving (1.2) by
splitting A and � into different steps. Our idea is to exploit the Hilbert space structure of
the underlying problem to build each iterate by first applying one step of a well-established
classical regularization method and then penalizing the resultant by the convex function �.
To motivate the method, we consider the exact data case. We take an invertible bounded linear
operator M : Y → Y which can be viewed as a pre-conditioner and rewrite (1.2) into the
equivalent form

min Dξ0�(x, x0) subject to MAx = My.

The corresponding Lagrangian is

L(x, p) := Dξ0�(x, x0) + 〈p, My − MAx〉,
2

Inverse Problems 30 (2014) 045012 Q Jin and X Lu

where p ∈ Y represents the dual variable. Then a desired solution of (1.2) can be found by
determining a saddle point of L if exists. Let (xc, pc) be a current guess of a saddle point of
L, we may update it to get a new guess (x+, p+) as follows: we first update pc by solving the
proximal maximization problem

p+ := arg max
p∈X

{
L(xc, p) − 1

2t
‖p − pc‖2

}
with a suitable step length t > 0. We then update xc by solving the minimization problem

x+ := arg min
x∈X

L(x, p+).

By straightforward calculation and simplification it follows

p+ = pc − tM(Axc − y),

x+ = arg min
x∈X

{�(x) − 〈ξ0 + A∗M∗ p+, x〉}
which is the one step result of the Uzawa algorithm [1] or the dual subgradient method [22],
where A∗ : Y → X and M∗ : Y → Y denote the adjoint operators of A and M respectively.
By setting ξc = ξ0 + A∗M∗ pc and ξ+ = ξ0 + A∗M∗ p+, the above equation can be transformed
into the form {

ξ+ = ξc − tA∗M∗M(Axc − y),

x+ = arg minx∈X {�(x) − 〈ξ+, x〉}. (1.4)

Now we may apply the updating scheme (1.4) to Ax = y iteratively but with dynamic
pre-conditioning operator Mn : Y → Y and variable step size tn > 0. This gives rise to the
following iterative methods{

ξn+1 = ξn − tnA∗M∗
nMn(Axn − y),

xn+1 = arg minx∈X {�(x) − 〈ξn+1, x〉}. (1.5)

The performance of the method (1.5) depends on the choices of {Mn}. If we take Mn = I for
all n, (1.5) becomes the method that has been studied in [4, 15] which is the generalization of
the classical Landweber iteration and is known to be a slowly convergent method.

In this paper we will consider (1.6) with Mn = (αnI + AA∗)−1/2 for all n, where {αn} is a
decreasing sequence of positive numbers. This yields the nonstationary iterative method{

ξn+1 = ξn − tnA∗(αnI + AA∗)−1(Axn − y),

xn+1 = arg minx∈X {�(x) − 〈ξn+1, x〉}. (1.6)

Observing that when �(x) = ‖x‖2/2 and tn = 1 for all n, (1.6) reduces to the nonstationary
iterated Tikhonov regularization

xn+1 = xn − A∗(αnI + AA∗)−1(Axn − y) (1.7)

whose convergence has been studied in [10] and it has been shown to be a fast convergent
method when {αn} is a geometric decreasing sequence. This strongly suggests that our method
(1.6) may also exhibit fast convergence property if {αn} and {tn} are chosen properly. We will
confirm this in the present paper. It is worthy to point out that each iteration in (1.6) consists
of two steps: the first step involves only the operator A and the second step involves only the
convex function �. This splitting character can make the computation much easier.

This paper is organized as follows. In section 2, we start with some preliminary facts from
convex analysis, and then give the convergence analysis of the method (1.6) when the data is
given exactly. In case the data is corrupted by noise, we propose a stopping rule to terminate
the iteration and establish the regularization property. We also give a possible extension of
our method to solve nonlinear inverse problems in Hilbert spaces. In section 3 we test the
performance of our method by reporting various numerical simulations, including the image
deblurring, the determination of source term in Poisson equation and the de-autoconvolution
problem.

3

Inverse Problems 30 (2014) 045012 Q Jin and X Lu

2. Convergence analysis of the method

In this section we first give the convergence analysis of (1.6) with suitable chosen tn when
� : X → (−∞,∞] is a proper, lower semi-continuous function that is strongly convex in
the sense that there is a constant c0 > 0 such that

�(sx̄ + (1 − s)x) + c0s(1 − s)‖x̄ − x‖2 � s�(x̄) + (1 − s)�(x) (2.1)

for all 0 � s � 1 and x̄, x ∈ X . We then consider the method when the data contains noise and
propose a stopping rule to render it into a regularization method. Our analysis is based on some
important results from convex analysis which will be recalled in the following subsection.

2.1. Tools from convex analysis

Given a convex function � : X → (−∞,∞], we will use D (�) := {x ∈ X : �(x) < ∞} to
denote its effective domain. It is called proper if D (�) 	= ∅. Given x ∈ X , the set

∂�(x) := {ξ ∈ X : �(x̄) − �(x) − 〈ξ, x̄ − x〉 � 0 for all x̄ ∈ X }
is called the subdifferential of � at x and each element ξ ∈ ∂�(x) is called a subgradient.

Our convergence analysis of (1.6) will not be carried out directly under the norm of X .
Instead we will use the Bregman distance [5] induced by �. Given ξ ∈ ∂�(x), the quantity

Dξ�(x̄, x) := �(x̄) − �(x) − 〈ξ, x̄ − x〉, x̄ ∈ X

is called the Bregman distance induced by � at x in the direction ξ . It is clear that
Dξ�(x̄, x) � 0. However, Bregman distance is not a metric distance since it does not satisfy
the symmetry and the triangle inequality in general. Nevertheless, when � is strongly convex
in the sense of (2.1), there holds [23]

Dξ�(x̄, x) � c0‖x̄ − x‖2, ∀x̄ ∈ X and ξ ∈ ∂�(x)

which means that the Bregman distance can be used to detect information under the norm
of X .

Although � could be non-smooth, its Fenchel conjugate can have enough regularity
provided � has enough convexity. The Fenchel conjugate of � is defined by

�∗(ξ) := sup
x∈X

{〈ξ, x〉 − �(x)}, ∀ξ ∈ X .

For a proper, lower semi-continuous, convex function �, there always holds

ξ ∈ ∂�(x) ⇐⇒ x ∈ ∂�∗(ξ) ⇐⇒ �(x) + �∗(ξ) = 〈ξ, x〉.
Consequently, the Bregman distance can be equivalently written as

Dξ�(x̄, x) = �(x̄) + �∗(ξ) − 〈ξ, x̄〉. (2.2)

If in addition � is strongly convex in the sense of (2.1), then D (�∗) = X , �∗ is Fréchet
differentiable, and its gradient ∇�∗ satisfies

‖∇�∗(ξ) − ∇�∗(η)‖ � ‖ξ − η‖
2c0

, (2.3)

i.e. ∇�∗ is Lipschitz continuous. These facts are crucial in the forthcoming convergence
analysis and their proofs can be found in many standard textbooks, cf [23].

4

Inverse Problems 30 (2014) 045012 Q Jin and X Lu

2.2. The method with exact data

We consider the convergence of the method (1.6) under the condition that � is proper, lower
semi-continuous, and strongly convex in the sense of (2.1). We will always assume that (1.1)
has a solution in D (�). By taking ξ0 ∈ X and define

x0 = arg min
x∈X

{�(x) − 〈ξ0, x〉}
as an initial guess, we define x† to be the solution of (1.1) in D (�) satisfying

Dξ0�(x†, x0) = min
{
Dξ0�(x, x0) : Ax = y

}
. (2.4)

It is easy to show that such x† is uniquely defined. Our aim is to show that the sequence {xn}
produced by (1.6) eventually converges to x† if tn is chosen properly.

To this end, we first consider the monotonicity of the Bregman distance Dξn�(x̂, xn)

with respect to n for any solution x̂ of (1.1) in D (�). By the subdifferential calculus and the
definition of xn, it is easy to see that ξn ∈ ∂�(xn) and hence xn = ∇�∗(ξn). Therefore, in
view of (2.2) and (2.3) we have

Dξn+1�(x̂, xn+1) − Dξn�(x̂, xn) = �∗(ξn+1) − �∗(ξn) − 〈ξn+1 − ξn, x̂〉
= �∗(ξn+1) − �∗(ξn) − 〈ξn+1 − ξn,∇�∗(ξn)〉 − 〈ξn+1 − ξn, x̂ − xn〉
=

∫ 1

0
〈ξn+1 − ξn,∇�∗(ξn + s(ξn+1 − ξn))

−∇�∗(ξn)〉 ds − 〈ξn+1 − ξn, x̂ − xn〉
�

∫ 1

0

1

2c0
s‖ξn+1 − ξn‖2 ds − 〈ξn+1 − ξn, x̂ − xn〉

= 1

4c0
‖ξn+1 − ξn‖2 − 〈ξn+1 − ξn, x̂ − xn〉.

Using the definition of ξn+1 in (1.6) and Ax̂ = y we obtain

Dξn+1�(x̂, xn+1) − Dξn�(x̂, xn) � 1

4c0
t2
n‖A∗(αnI + AA∗)−1(Axn − y)‖2

− tn〈(αnI + AA∗)−1(Axn − y), Axn − y〉.
If Axn − y 	= 0, we may choose tn such that

tn = μ0〈(αnI + AA∗)−1(Axn − y), Axn − y〉
‖A∗(αnI + AA∗)−1(Axn − y)‖2

(2.5)

with 0 < μ0 < 4c0, then it yields

Dξn+1�(x̂, xn+1) − Dξn�(x̂, xn) � −
(

1 − μ0

4c0

)
tn‖(αnI + AA∗)−1/2(Axn − y)‖2 � 0. (2.6)

When Axn − y = 0, the inequality (2.6) obviously holds for any tn � 0. We observe that the
tn chosen by (2.5) could be very large when ‖Axn − y‖ is small. Using such a choice of tn it
could make the method numerically unstable, in particular when the data contains noise. To
avoid this, we take a preassigned number μ1 > 0 and then set

tn = min

{
μ0〈(αnI + AA∗)−1(Axn − y), Axn − y〉

‖A∗(αnI + AA∗)−1(Axn − y)‖2
, μ1

}
. (2.7)

The above argument then shows the following monotonicity result.

Lemma 2.1. If tn is chosen by (2.7) with 0 < μ0 < 4c0 and μ1 > 0, then

Dξn+1�(x̂, xn+1) � Dξn�(x̂, xn)

5

Inverse Problems 30 (2014) 045012 Q Jin and X Lu

and

c1tn‖(αnI + AA∗)−1/2(Axn − y)‖2 � Dξn�(x̂, xn) − Dξn+1�(x̂, xn+1) (2.8)

for any solution x̂ of (1.1) in D (�), where c1 := 1 − μ0/(4c0).

We will use lemma 2.1 to derive the convergence of the method (1.6). For the step size tn
defined by (2.7), it is easy to see that

min{μ0, μ1} � tn � μ1,

where we used the inequality ‖A∗(αnI + AA∗)−1/2‖ � 1 to derive the left inequality. This
together with (2.8) implies

lim
n→∞ ‖(αnI + AA∗)−1/2(Axn − y)‖ = 0. (2.9)

Since ‖(αnI + AA∗)1/2‖ �
√

α0 + ‖A‖2, we can further derive that

lim
n→∞ ‖Axn − y‖ = 0. (2.10)

The following main result shows that the method (1.6) is indeed convergent if tn is chosen
by (2.7).

Theorem 2.2. Let � : X → (−∞,∞] be a proper, lower semi-continuous function that is
strongly convex in the sense of (2.1). If {αn} is a decreasing sequence of positive numbers and
if tn is chosen by (2.7) with 0 < μ0 < 4c0 and μ1 > 0, then for the method (1.6) there hold

lim
n→∞ ‖xn − x†‖ = 0 and lim

n→∞ Dξn�(x†, xn) = 0.

The proof is based on the following useful result.

Proposition 2.3. Consider the equation (1.1). Let � : X → (−∞,∞] be a proper, lower
semi-continuous and strong convex function. Let {xn} ⊂ X and {ξn} ⊂ X be such that

(i) ξn ∈ ∂�(xn) for all n;
(ii) for any solution x̂ of (1.1) in D (�) the sequence {Dξn�(x̂, xn)} is monotonically

decreasing;
(iii) limn→∞ ‖Axn − y‖ = 0;
(iv) there is a subsequence {nk} with nk → ∞ such that for any solution x̂ of (1.1) in D (�)

there holds

lim
l→∞

sup
k�l

|〈ξnk − ξnl , xnk − x̂〉| = 0. (2.11)

Then there exists a solution x∗ of (1.1) in D (�) such that

lim
n→∞ Dξn�(x∗, xn) = 0.

If, in addition, ξn+1 − ξn ∈ R(A∗) for all n, then x∗ = x†.

Proof. This is a slight modification of [15, proposition 3.6], we include here the proof for
completeness.

We first show the convergence of {xnk}. For any l < k we have from the definition of
Bregman distance that

Dξnl
�(xnk , xnl) = Dξnl

�(x̂, xnl) − Dξnk
�(x̂, xnk) + 〈ξnk − ξnl , xnk − x̂〉. (2.12)

6

Inverse Problems 30 (2014) 045012 Q Jin and X Lu

By the monotonicity of {Dξn�(x̂, xn)} and (2.11) we obtain that Dξnl
�(xnk , xnl) → 0 as

k, l → ∞. In view of the strong convexity of �, it follows that {xnk} is a Cauchy sequence in
X . Thus xnk → x∗ for some x∗ ∈ X . Since limn→∞ ‖Axn − y‖ = 0, we have Ax∗ = y.

In order to show x∗ ∈ D (�), we use ξnk ∈ ∂�(xnk) to obtain

�(xnk) � �(x̂) + 〈ξnk , xnk − x̂〉. (2.13)

In view of (2.11) and xnk → x∗ as k → ∞, there is a constant C0 such that

|〈ξnk − ξn0 , xnk − x̂〉| � C0 and |〈ξn0 , xnk − x̂〉| � C0, ∀k.

Therefore |〈ξnk , xnk − x̂〉| � 2C0 for all k. By using the lower semi-continuity of � we obtain

�(x∗) � lim inf
k→∞

�(xnk) � �(x̂) + 2C0 < ∞.

This implies that x∗ ∈ D (�).
Next we derive the convergence in Bregman distance. Since {Dξn�(x∗, xn)} is

monotonically decreasing, the limit ε0 := limn→∞ Dξn�(x∗, xn) � 0 exists. By taking k → ∞
in (2.12) with x̂ = x∗ and using the lower semi-continuous of �, we obtain

Dξnl
�(x∗, xnl) � Dξnl

�(x∗, xnl) − ε0 + sup
k�l

|〈ξnk − ξnl , xnk − x∗〉|

which is true for all l. Letting l → ∞ and using (2.11) gives ε0 � ε0 − ε0 = 0. Thus ε0 = 0,
i.e. limn→∞ Dξn�(x∗, xn) = 0.

Finally we show that x∗ = x†. We use (2.13) with x̂ replaced by x† to obtain

Dξ0�(xnk , x0) � Dξ0�(x†, x0) + 〈ξnk − ξ0, xnk − x†〉. (2.14)

Because of (2.11), for any ε > 0 we can find k0 such that

|〈ξnk − ξnk0
, xnk − x†〉| < ε/2, ∀k � k0.

We next consider 〈ξnk0
− ξ0, xnk − x†〉. Since ξn+1 − ξn ∈ R(A∗), we can find v ∈ Y such that

ξnk0
− ξ0 = A∗v. Consequently

|〈ξnk0
− ξ0, xnk − x†〉| = |〈v, Axnk − y〉| � ‖v‖‖Axnk − y‖.

Since ‖Axn − y‖ → 0 as n → ∞, we can find k1 � k0 such that

|〈ξnk0
− ξ0, xnk − x†〉| < ε/2, ∀k � k1.

Therefore |〈ξnk − ξ0, xnk − x†〉| < ε for all k � k1. Since ε > 0 is arbitrary, we obtain
limk→∞〈ξnk − ξ0, xnk − x†〉 = 0. By taking k → ∞ in (2.14) and using the lower semi-
continuity of � we obtain Dξ0�(x∗, x0) � Dξ0�(x†, x0). According to the definition of x† we
must have Dξ0�(x∗, x0) = Dξ0�(x†, x0). By uniqueness it follows x∗ = x†. �

Proof of theorem 2.2. We will use proposition 2.3 to complete the proof. By the definition
of {ξn} we always have ξn+1 − ξn ∈ R(A∗). It remains to verify the four conditions
in proposition 2.3. By the definition of xn we have ξn ∈ ∂�(xn) which implies (i) in
proposition 2.3. Moreover, lemma 2.1 and (2.10) confirm (ii) and (iii) in proposition 2.3
respectively.

It remains only to verify (iv) in proposition 2.3. To this end, we consider

Rn := ‖(αnI + AA∗)−1/2(Axn − y)‖.
In view of (2.9), we have limn→∞ Rn = 0. Moreover, by the definition of the method (1.6),
if Rn = 0 for some n, then Rm = 0 for all m � n. Consequently, we may choose a strictly

7

Inverse Problems 30 (2014) 045012 Q Jin and X Lu

increasing subsequence {nk} of integers such that n0 = 0 and nk, for each k � 1, is the first
integer satisfying

nk � nk−1 + 1 and Rnk � Rnk−1 .

For this chosen {nk} it is easy to see that

Rn � Rnk , ∀0 � n � nk. (2.15)

Indeed, for 0 � n < nk, we can find 0 � l < k such that nl � n < nl+1 and thus, by
the definition of nl+1, we have Rn � Rnl � Rnk . With the above chosen {nk}, we will show
that (2.11) holds for any solution x̂ of (1.1) in D (�). By the definition of ξn we have for l < k
that

〈ξnl − ξnk , x̂ − xnk〉 =
nk−1∑
n=nl

〈ξn+1 − ξn, xnk − x̂〉

= −
nk−1∑
n=nl

tn〈(αnI + AA∗)−1(Axn − y), Axnk − y〉.

Therefore

|〈ξnl − ξnk , x̂ − xnk〉| �
nk−1∑
n=nl

tn‖(αnI + AA∗)−1/2(Axn − y)‖‖(αnI + AA∗)−1/2(Axnk − y)‖.

By using the monotonicity of {αn} and (2.15), we have for 0 � n � nk that

‖(αnI + AA∗)−1/2(Axnk − y)‖ � ‖(αnk I + AA∗)−1/2(Axnk − y)‖ = Rnk � Rn.

Consequently, it follows from (2.8) that

|〈ξnl − ξnk , x̂ − xnk〉| �
nk−1∑
n=nl

tnR2
n � 1

c1
(Dξnl

�(x̂, xnl) − Dξnk
�(x̂, xnk))

which, together with the monotonicity of {Dξn�(x̂, xn)}, implies (2.11). The proof is therefore
complete. �

2.3. The method with noisy data

We next consider the situation that the data contains noise. Thus, instead of y, we only have
noisy data yδ satisfying

‖yδ − y‖ � δ

with a small known noise level δ > 0. The corresponding method takes the form{
ξ δ

n+1 = ξ δ
n − tδnA∗(αnI + AA∗)−1

(
Axδ

n − yδ
)
,

xδ
n+1 = arg minx∈X

{
�(x) − 〈ξ δ

n+1, x〉} (2.16)

with suitably chosen step length tδn > 0, where ξ δ
0 := ξ0 and xδ

0 := x0. In order to terminate
the method, we need some stopping criterion. It seems that a natural one is the discrepancy
principle

‖Axδ
nδ

− yδ‖ � τδ < ‖Axδ
n − yδ‖, 0 � n < nδ (2.17)

for some number τ > 1. Unfortunately, we cannot prove the regularization property for the
method terminated by the discrepancy principle; furthermore, numerical simulations indicate
that the discrepancy principle might not always produce satisfactory reconstruction result.

8

Inverse Problems 30 (2014) 045012 Q Jin and X Lu

Therefore, the discrepancy principle might not be a natural rule to terminate (2.16). Recall
that when we motivate our method, we consider the preconditioned equation

(αnI + AA∗)−1/2Ax = (αnI + AA∗)−1/2y

instead of Ax = y. This indicates that it might be natural to stop the iteration as long as

‖(αnI + AA∗)−1/2(Axδ
n − yδ)‖ � τ‖(αnI + AA∗)−1/2(y − yδ)‖ (2.18)

is satisfied for the first time. The stopping rule (2.18) can be viewed as the discrepancy
principle applied to the pre-conditioned equation. Since the right-hand side of (2.18)
involves y which is not available, it cannot be used in practical applications. Considering
‖(αnI + AA∗)−1/2‖ � 1/

√
αn, we may replace the right-hand side of (2.18) by τδ/

√
αn which

leads to the following stopping rule.

Rule 2.1. Let τ > 1 be a given number. We define nδ to be the first integer such that

αnδ
〈(αnδ

I + AA∗)−1(Axδ
nδ

− yδ), Axδ
nδ

− yδ〉 � τ 2δ2.

In the context of Tikhonov regularization for linear ill-posed inverse problems, a similar
rule was proposed in [9, 19] to choose the regularization parameter. The rule was then
generalized and analyzed in [14, 21] for nonlinear Tikhonov regularization and was further
extended in [12] as a stopping rule for the iteratively regularized Gauss–Newton method for
solving nonlinear inverse problems in Hilbert spaces.

Combining rule 2.1 with (2.16) and using suitable choice of the step length tδn it yields the
following algorithm.

Algorithm 2.1 (Nonstationary iterative method with convex penalty).

(i) Take τ > 1, μ0 > 0, μ1 > 0 and a decreasing sequence {αn} of positive numbers.
(ii) Take ξ0 ∈ X and define x0 := arg minx∈X {�(x) − 〈ξ0, x〉} as an initial guess.

(iii) For each n = 0, 1, · · · define ξ δ
n+1 and xδ

n+1 by (2.16), where

tδn = min

{
μ0〈(αnI + AA∗)−1(Axδ

n − yδ), Axδ
n − yδ〉

‖A∗(αnI + AA∗)−1(Axδ
n − yδ)‖2

, μ1

}
. (2.19)

(iv) Let nδ be the integer determined by rule 2.1 and use xδ
nδ

as an approximate solution.

The following lemma shows that algorithm 2.1 is well defined and certain monotonicity
result holds along the iteration if μ0 > 0 is suitably small.

Lemma 2.4. Let � : X → (−∞,∞] be a proper, lower semi-continuous function that is
strongly convex in the sense of (2.1). If {αn} is a decreasing sequence of positive numbers and
tδn is chosen by (2.19) with 0 < μ0 < 4c0(1 − 1/τ) and μ1 > 0, then rule 2.1 defines a finite
integer nδ . Moreover, if nδ � 1, then for the sequences {ξ δ

n } and {xδ
n} defined by (2.16) there

holds

Dξδ
n+1

�(x̂, xδ
n+1) � Dξδ

n
�(x̂, xδ

n), 0 � n < nδ (2.20)

for any solution x̂ of (1.1) in D (�).

Proof. Let 0 � n < nδ . By using the similar argument in the proof of lemma 2.1 we can obtain

Dξδ
n+1

�(x̂, xδ
n+1) − Dξδ

n
�(x̂, xδ

n) � 1

4c0
‖ξ δ

n+1 − ξ δ
n ‖2 − 〈ξ δ

n+1 − ξ δ
n , x̂ − xδ

n〉

= 1

4c0
(tδn)2‖A∗(αnI + AA∗)−1(Axδ

n − yδ)‖2

− tδn〈(αnI + AA∗)−1(Axδ
n − yδ), Axδ

n − y〉.
9

Inverse Problems 30 (2014) 045012 Q Jin and X Lu

In view of ‖yδ − y‖ � δ and the choice of tδn , it follows that

Dξδ
n+1

�(x̂, xδ
n+1) − Dξδ

n
�(x̂, xδ

n) � −
(

1 − μ0

4c0

)
tδn‖(αnI + AA∗)−1/2(Axδ

n − yδ)‖2

+ tδn‖(αnI + AA∗)−1/2(Axδ
n − yδ)‖ δ√

αn
.

By the definition of nδ and n < nδ we have
δ√
αn

� 1

τ
‖(αnI + AA∗)−1/2(Axδ

n − yδ)‖. (2.21)

Therefore, we have with c2 := 1 − 1/τ − μ0/(4c0) > 0 that

Dξδ
n+1

�(x̂, xδ
n+1) − Dξδ

n
�(x̂, xδ

n) � −c2tδn‖(αnI + AA∗)−1/2(Axδ
n − yδ)‖2 � 0.

This shows the monotonicity result (2.20) and

c2tδn‖(αnI + AA∗)−1/2(Axδ
n − yδ)‖2 � Dξδ

n
�(x̂, xδ

n) − Dξδ
n+1

�(x̂, xδ
n+1)

for all 0 � n < nδ . We may sum the above inequality over n from n = 0 to n = m for any
m < nδ to get

c2

m∑
n=0

tδn‖(αnI + AA∗)−1/2(Axδ
n − yδ)‖2 � Dξ0�(x̂, x0).

By the choice of tδn it is easy to check that tδn � min{μ0, μ1}. Therefore, in view of (2.21), we
have

c2 min{μ0, μ1}τ 2δ2
m∑

n=0

1

αn
� Dξ0�(x̂, x0) (2.22)

for all m < nδ . Since αn � α0 for all n, it follows from (2.22) that nδ < ∞. The proof is
therefore complete. �

Remark 2.1. By taking m = nδ −1 in (2.22), the integer nδ defined by rule 2.1 can be estimated
by

c3δ
2

nδ−1∑
n=0

1

αn
� Dξ0�(x̂, x0), (2.23)

where c3 := c2 min{μ0, μ1}τ 2. In case {αn} is chosen such that αn+1/αn � q for all n for some
constant 0 < q < 1, then

nδ−1∑
n=0

1

αn
� 1

α0

nδ−1∑
n=0

q−n = 1 − qnδ

α0(1 − q)qnδ−1
� 1

α0qnδ−1
.

It then follows from (2.23) that c3α
−1
0 δ2q−nδ+1 � Dξ0�(x̂, x0) which implies that nδ =

O(1+| log δ|). Therefore, with such a chosen {αn}, algorithm 2.1 exhibits the fast convergence
property.

In order to use the results given in lemma 2.4 and theorem 2.2 to prove the convergence
of the method (2.16), we need the following stability result.

Lemma 2.5. Let {ξn} and {xn} be defined by (1.6) with {tn} chosen by (2.7), and let {ξ δ
n } and

{xδ
n} be defined by (2.16) with {tδn} chosen by (2.19). Then for each fixed integer n there hold

lim
δ→0

‖xδ
n − xn‖ = 0 and lim

δ→0
‖ξ δ

n − ξn‖ = 0.

10

Inverse Problems 30 (2014) 045012 Q Jin and X Lu

Proof. We prove the result by induction on n. It is trivial when n = 0 because ξ δ
0 = ξ0 and

xδ
0 = x0. Assume next that the result is true for some n � 0. We will show that ξ δ

n+1 → ξn+1

and xδ
n+1 → xn+1 as δ → 0. We consider two cases.

Case 1: Axn 	= y. In this case we must have A∗(αnI+AA∗)−1(Axn−y) 	= 0 since otherwise

0 = 〈A∗(αnI + AA∗)−1(Axn − y), xn − x†〉 = ‖(αnI + AA∗)−1/2(Axn − y)‖2 > 0.

Therefore, by the induction hypothesis it is straightforward to see that tδn → tn as
δ → 0. According to the definition of ξ δ

n+1 and the induction hypothesis, we then obtain
limδ→0 ‖ξ δ

n+1 − ξn+1‖ = 0. Recall that

xn+1 = ∇�∗(ξn+1) and xδ
n+1 = ∇�∗(ξ δ

n+1).

We then obtain limδ→0 ‖xδ
n+1 − xn+1‖ = 0 by the continuity of ∇�∗.

Case 2: Axn = y. In this case we have ξn+1 = ξn. Therefore

ξ δ
n+1 − ξn+1 = ξ δ

n − ξn − tδnA∗(αnI + AA∗)−1(Axδ
n − yδ).

Consequently, by the induction hypothesis, we have

lim sup
δ→0

‖ξ δ
n+1 − ξn+1‖ � lim sup

δ→0

(
‖ξ δ

n − ξn‖ + μ1√
αn

‖Axδ
n − yδ‖

)
= μ1√

αn
‖Axn − y‖ = 0.

By using again the continuity of ∇�∗, we obtain limδ→0 ‖xδ
n+1 − xn+1‖ = 0. �

We are now in a position to give the main result concerning the regularization property of
the method (2.16) with noisy data when it is terminated by rule 2.1.

Theorem 2.6. Let � : X → (−∞,∞] be proper, lower semi-continuous and strong convex
in the sense of (2.1). Let {αn} be a decreasing sequence of positive numbers and let {tδn} be
chosen by (2.19) with 0 < μ0 < 4c0(1 − 1/τ) and μ1 > 0. Let nδ be the finite integer defined
by rule 2.1. Then for the method (2.16) there hold

lim
δ→0

‖xδ
nδ

− x†‖ = 0 and lim
δ→0

Dξδ
nδ
�(x†, xδ

nδ
) = 0.

Proof. Due to the strong convexity of �, it suffices to show that limδ→0 Dξδ
nδ
�(x†, xδ

nδ
) = 0.

By the subsequence–subsequence argument, we may complete the proof by considering two
cases.

Assume first that {yδk} is a sequence satisfying ‖yδk − y‖ � δk with δk → 0 such that
nk := nδk → n̂ as k → ∞ for some finite integer n̂. We may assume nk = n̂ for all k. From the
definition of n̂ := nk we have

√
αn̂‖(αn̂I + AA∗)−1/2(Axδk

n̂) − yδk)‖ � τδk. (2.24)

By taking k → ∞ and using lemma 2.5, we can obtain Axn̂ = y. In view of the definition of
{ξn} and {xn}, this implies that ξn = ξn̂ and xn = xn̂ for all n � n̂. Since theorem 2.2 implies
that xn → x† as n → ∞, we must have xn̂ = x†. Moreover, by lemma 2.5, ξ δk

nk
→ ξn̂ as

k → ∞. Therefore, by the continuity of �∗ we can obtain

lim
k→∞

D
ξ

δk
nk

�(x†, xδk
nk

) = lim
k→∞

(
�(x†) + �∗(ξ δk

nk
) − 〈ξ δk

nk
, x†〉)

= �(xn̂) + �∗(ξn̂) − 〈ξn̂, xn̂〉 = 0.

11

Inverse Problems 30 (2014) 045012 Q Jin and X Lu

Assume next that {yδk} is a sequence satisfying ‖yδk − y‖ � δk with δk → 0 such that
nk := nδk → ∞ as k → ∞. Let n be any fixed integer. Then nk > n for large k. It then follows
from (2.20) in lemma 2.4 that

D
ξ

δk
nk

�(x†, xδk
nk

) � D
ξ

δk
n

�(x†, xδk
n) = �(x†) + �∗(ξ δk

n) − 〈ξ δk
n , x†〉.

By using lemma 2.5 and the continuity of �∗ we obtain

lim sup
k→∞

D
ξ

δk
nk

�(x†, xδk
nk

) � �(x†) + �∗(ξn) − 〈ξn, x†〉 = Dξn�(x†, xn).

Since n can be arbitrary and since theorem 2.2 implies that Dξn�(x†, xn) → 0 as n → ∞, we
therefore have limk→∞ D

ξ
δk
nk

�(x†, xδk
nk

) = 0. �

Remark 2.2. In certain applications, the solution of (1.1) may have some physical constraints.
Thus, instead of (1.1), we need to consider the constrained problem

Ax = y subject to x ∈ C,

where C is a closed convex subset in X . Correspondingly, (2.16) can be modified into the form{
ξ δ

n+1 = ξ δ
n − tδnA∗(αnI + AA∗)−1(Axδ

n − yδ),

xδ
n+1 = arg minx∈C{�(x) − 〈ξ δ

n+1, x〉} (2.25)

which can be analyzed by the above framework by introducing �C := � + ıC , where ıC
denotes the indicator function of C, i.e.

ıC(x) =
{

0, x ∈ C,

+∞, x 	∈ C.

When tδn is chosen by (2.19) and (2.25) is terminated by rule 2.1, we still have ‖xδ
nδ

− x†‖ → 0
and Dξδ

nδ
�C(x†, xδ

nδ
) → 0 as δ → 0. However, Dξδ

nδ
�(x†, xδ

nδ
) may not converge to 0 because

ξ δ
nδ

is not necessarily in ∂�(xδ
nδ

).

Remark 2.3. In order to implement algorithm 2.1, a key ingredient is to solve the minimization
problem

x = arg min
z∈X

{�(z) − 〈ξ, z〉} (2.26)

for any given ξ ∈ X . For some choices of �, this minimization problem can be efficiently
solved numerically. When X = L2(
), where
 is a bounded Lipschitz domain in Euclidean
space, there are at least two important choices of � that are crucial for sparsity recovery and
discontinuity detection. The first one is

�(x) := 1

2β

∫

|x(ω)|2 dω +
∫

|x(ω)| dω (2.27)

with β > 0, the minimizer of (2.26) can be given explicitly by

x(ω) = β sign(ξ (ω)) max{|ξ (ω)| − 1, 0}, ω ∈
.

The second one is

�(x) := 1

2β

∫

|x(ω)|2 dω + TV(x) (2.28)

with β > 0, where TV(x) denotes the total variation of x, i.e.

TV(x) := sup

{∫

x div f dω : f ∈ C1
0 (
; R

N) and ‖ f ‖L∞(
) � 1

}
.

12

Inverse Problems 30 (2014) 045012 Q Jin and X Lu

Then the minimization problem (2.26) can be equivalently formulated as

x = arg min
z∈L2(
)

{
1

2β
‖z − βξ‖2

L2(
)
+ TV(z)

}
which is the total variation denoising problem [20]. Although there is no explicit formula for
the minimizer of (2.26), there are many efficient numerical solvers developed in recent years,
see [2, 3, 6, 17]. For the numerical simulations involving total variation presented in section 3,
we always use the denoising algorithm FISTA from [2, 3]. Indeed, when solving (2.26) with
� given by (2.28), FISTA is used to solve its dual problem whose solution determines the
solution of the primal problem (2.26) directly; one may refer to the algorithm on page 2462 in
[3] and its monotone version.

Remark 2.4. Another key ingredient in implementing algorithm 2.1 is to determine v :=
(αI + AA∗)−1r for α > 0, where r := Axδ

n − yδ . This amounts to solving the linear equation

(αI + AA∗)v = r

for which many efficient solvers from numerical linear algebra can be applied. When A has
special structure, this equation can even be solved very fast. For instance, if A is a convolution
operator in R

d , say

Ax(σ) =
∫

Rd

k(σ − η)x(η) dη

with the kernel k decaying sufficiently fast at infinity, then v can be determined as

v = F−1

(F (r)

α + |F (k)|2
)

,

where F and F−1 denote the Fourier transform and the inverse Fourier transform respectively.
Therefore v can be calculated efficiently by the fast Fourier transform.

2.4. Possible extension for nonlinear inverse problems

Our method can be extended for solving nonlinear inverse problems in Hilbert spaces that can
be formulated as the equation

F(x) = y, (2.29)

where F : D (F) ⊂ X → Y is a nonlinear continuous operator between two Hilbert spaces
X and Y with closed convex domain D (F). We assume that for each x ∈ D (F) there is a
bounded linear operator L(x) : X → Y such that

lim
h↘0

F(x + h(z − x)) − F(x)

h
= L(x)(z − x), ∀z ∈ D (F).

In case F is Fréchet differentiable at x, L(x) is exactly the Fréchet derivative of F at that point.
In order to find the solution of (2.29) with special feature, as before we introduce a penalty

function � : X → (−∞,∞] which is proper, convex and lower semi-continuous. Let yδ be
the only available noisy data satisfying

‖yδ − y‖ � δ

with a small known noise level δ > 0. Then an obvious extension of algorithm 2.1 for solving
(2.29) takes the following form.

Algorithm 2.2 (Nonstationary iterative method for nonlinear problem).

(i) Take τ > 1, μ0 > 0, μ1 > 0 and a decreasing sequence {αn} of positive numbers.

13

Inverse Problems 30 (2014) 045012 Q Jin and X Lu

(ii) Take ξ0 ∈ X and define x0 := arg minx∈D(F){�(x) − 〈ξ0, x〉} as an initial guess.
(iii) For each n = 0, 1, · · · define

ξn+1 = ξn − tnL(xn)
∗(αnI + L(xn)L(xn)

∗)−1(F(xn) − yδ),

xn+1 = arg min
x∈D(F)

{�(x) − 〈ξn+1, x〉},
where

tn = min

{
μ0〈(αnI + L(xn)L(xn)

∗)−1(F(xn) − yδ), F(xn) − yδ〉
‖L(xn)∗(αnI + L(xn)L(xn)∗)−1(F(xn) − yδ)‖2

, μ1

}
.

(iv) Let nδ be the first integer such that

αnδ
〈(αnδ

I + L(xnδ
)L(xnδ

)∗)−1(F(xnδ
) − yδ), F(xnδ

) − yδ〉 � τ 2δ2

and use xnδ
to approximate the solution of (2.29).

We remark that when �(x) = 1
2‖x‖2, algorithm 2.2 reduces to a method which is similar to

the regularized Levenberg–Marquardt method in [13] for which convergence is proved under
certain conditions on F . For general convex penalty function �, however, we do not have
convergence theory on algorithm 2.2 yet. Nevertheless, we will give numerical simulations to
indicate that it indeed performs very well.

3. Numerical simulations

In this section we will provide various numerical simulations on our method. The choice of
the sequence {αn} plays a crucial role for the performance: if {αn} decays faster, only fewer
iterations are required but the reconstruction result is less accurate; on the other hand, if {αn}
decays slower, more iterations are required but the reconstruction result is more accurate. In
order to solve this dilemma, we choose fast decaying {αn} at the beginning, and then choose
slow decaying {αn} when the method tends to stop. More precisely, we choose {αn} according
to the following rule.

Rule 3.1. Let 0 < γ0 � γ1 � 1 and ρ̂ > 1 be pre-assigned numbers. We take some number
α0 > 0 and for n � 0 define

ρn :=
√

αn‖(αnI + AA∗)−1/2(Axδ
n − yδ)‖

τδ
.

If ρn > ρ̂ we set αn+1 = γ0αn; otherwise we set αn+1 = γ1αn.

All the computation results in this section are based on {αn} chosen by this rule with
γ0 ≈ 0.5, γ1 ≈ 1 and ρ̂ ≈ 2.5. Our tests were done by using MATLAB R2012a on an Lenovo
laptop with Intel(R) Core(TM) i5 CPU 2.30 GHz and 6 GB memory.

3.1. Integral equation of first kind in dimension 1

We first consider the integral equation of the form

Ax(s) :=
∫ 1

0
k(s, t)x(t) dt = y(s) on [0, 1], (3.1)

where

k(s, t) =
{

40s(1 − t), s � t
40t(1 − s), s � t.

14

Inverse Problems 30 (2014) 045012 Q Jin and X Lu

0 0.5 1
−2

0

2

4

6

exact solution

0 0.5 1
−2

0

2

4

6

δ=0.01, nδ=6

0 0.5 1
−2

0

2

4

6

δ=0.001, nδ=9

0 0.5 1
−2

0

2

4

6

δ=0.0001, nδ=22

0 0.5 1

−5

0

5

exact solution

0 0.5 1

−5

0

5

δ=0.001, nδ=17

0 0.5 1

−5

0

5

δ=0.0001, nδ=20

0 0.5 1

−5

0

5

δ=1e−05, nδ=26

Figure 1. Reconstruction results for (3.1) by our method using noisy data with various
noise levels

It is easy to see, that A is a compact linear operator from L2[0, 1] to L2[0, 1]. Our goal is to
find the solution of (3.1) using noisy data yδ satisfying ‖y − yδ‖L2[0,1] = δ for some specified
noise level δ. In our numerical simulations, we divide [0, 1] into N = 400 subintervals of
equal length and approximate any integrals by the trapezoidal rule.

In figure 1 we report the numerical performance of algorithm 2.1. The sequence {αn} is
selected by rule 3.1 with α0 = 0.01, γ0 = 0.6, γ1 = 0.99 and ρ̂ = 2.5. The first row gives the
reconstruction results using noisy data with various noise levels when the sought solution is
sparse; we use the penalty function � given in (2.27) with β = 10. The second row reports the
reconstruction results for various noise levels when the sought solution is piecewise constant;
we use the penalty function � given in (2.28) with β = 100. When the one dimensional
(1D) TV-denoising algorithm FISTA in [2, 3] is used to solve the minimization problems
associated with this �, it is terminated as long as the number of iterations exceeds 2500 or
the error between two successive iterates is smaller than 10−6. During these computations,
we use ξ0(t) ≡ 0 and the parameters τ = 1.01, μ0 = 1/β and μ1 = 1 in algorithm 2.1. The
computational times for the first row are 0.0677 s, 0.0826 s and 0.1017 s respectively, and
the computation times for the second row are 0.2963 s, 0.4458 s and 1.0672 s respectively.
This shows that algorithm 2.1 indeed is a fast method with the capability of capturing special
features of solutions.

3.2. Determine source term in Poisson equation

Let
 = (0, 1) × (0, 1). We consider the problem of determining the source term f ∈ L2(
)

in the Poisson equation

−�u = f in
, u = 0 on ∂

15

Inverse Problems 30 (2014) 045012 Q Jin and X Lu

from an L2(
) measurement uδ of u with ‖uδ − u‖L2(
) � δ. This problem takes the form
(1.1) if we define A := (−�)−1, where −� : H2 ∩ H1

0 (
) → L2(
) is an isomorphism. The
information on A can be obtained by solving the equation.

In order to solve the Poisson equation numerically, we take (N +1)× (N +1) grid points

(xi, y j) := (i/N, j/N), i, j = 0, 1, . . . , N

on
, and write ui, j for u(xi, y j) and fi, j for f (xi, y j). By the finite difference approximation
of −�u, the Poisson equation has the discrete form

4ui, j − ui+1, j − ui−1, j − ui, j+1 − ui, j−1 = h2fi, j, i, j = 1, . . . , N − 1, (3.2)

where h = 1/N. Since u = 0 on ∂
, the discrete sine transform can be used to solve (3.2).
Consequently ui, j can be determined by the inverse discrete sine transform ([18])

ui, j = (S−1û)i, j := 4h2
N−1∑
p=1

N−1∑
q=1

ûp,q sin(iphπ) sin(jqhπ)

for i, j = 1, . . . , N − 1, where

ûp,q = (�f̂)p,q := h2 f̂p,q

4 − 2 cos(phπ) − 2 cos(qhπ)

and f̂p,q is determined by the discrete sine transform

f̂p,q = (Sf)p,q :=
N−1∑
i=1

N−1∑
j=1

fi, j sin(iphπ) sin(jqhπ).

Let A = S−1�S. Then f can be determined by solving the equation Af = u. When applying
algorithm 2.1, we need to determine v = (αI + AA∗)−1r for various α > 0 and vectors r.
This can be computed as

v = S(αI + �2)−1S−1r,

where, for any vector w, Sw and S−1w can be implemented by the fast sine and inverse sine
transforms respectively, while

[(αI + �2)−1w]i, j = wi, j/(α + h4/(4 − 2 cos(ihπ) − 2 cos(jhπ))2).

Therefore v can be computed efficiently.
We apply algorithm 2.1 to reconstruct the source term which is assumed to be piecewise

constant. In our computation we use a noisy data with noise level δ = 10−3. The left plot
in figure 2 is the exact solution. The right plot in figure 2 is the reconstruction result by
algorithm 2.1 using initial guess ξ0 ≡ 0 and the penalty function

�(f) = 1

2β
‖f‖F + TVI(f),

where ‖f‖F is the Frobenius norm of f and TVI(f) denotes the discrete isotropic TV defined
by [3]

TVI(f) :=
N−1∑
i=0

N−1∑
j=0

√
(fi, j − fi+1, j)2 + (fi, j − fi, j+1)2 +

N−1∑
i=0

|fi,N − fi+1,N | +
N−1∑
j=0

|fN, j − fN, j+1|.

In each step of algorithm 2.1, the minimization problem associate with � is solved by
performing 400 iterations of the two-dimensional (2D) TV-denoising algorithm FISTA in
[3]. In our computation, we use N = 120, and for those parameters in algorithm 2.1, we
take τ = 1.01, β = 20, μ0 = 0.4/β and μ1 = 2. When using rule 3.1 to choose {αn}
we take α0 = 0.001, γ0 = 0.5, γ1 = 0.95 and ρ̂ = 2. The reconstruction result indicates
that our method succeeds in capturing the feature of the solution. Moreover, the computation
terminates after nδ = 17 iterations and takes 11.7092 s.

16

Inverse Problems 30 (2014) 045012 Q Jin and X Lu

0

0.5

1

0

0.5

1

0

2

4

6

8

10

12

0

0.5

1

0

0.5

1

0

2

4

6

8

10

12

0

2

4

6

8

10

12

0

2

4

6

8

10

12

Figure 2. Reconstruction of the source term in Poisson equation using noisy data with
δ = 10−3

3.3. Image deblurring

Blurring in images can arise from many sources, such as limitations of the optical system,
camera and object motion, astigmatism, and environmental effects [11]. Image deblurring is
the process of making a blurry image clearer to better represent the true scene.

We consider grayscale digital images which can be represented as rectangular matrices of
size m×n. Let X and B denote the true image and the blurred image respectively. The blurring
process can be described by an operator L : R

m×n → R
m×n such that B = L(X). We consider

the case that the model is shift-invariant and L is linear. By stacking the columns of X and B
we can get two long column vectors x and b of length N := mn. Then there is a large matrix
A ∈ R

N×N such that b = Ax. Considering the appearance of unavoidable random noise, one
in fact has

bδ = Ax + e,

where e denotes the noise. The blurring matrix A is determined by the point spread function
(PSF) P—the function that describes the blurring and the resulting image of the single bright
pixel (i.e. point source).

Throughout this subsection, periodic boundary conditions are assumed on all images.
Then A is a matrix which is block circulant with circulant blocks; each block is built from P.
It turns out that A has the spectral decomposition

A = F∗�F

where F is the 2D unitary discrete Fourier transform matrix and � is the diagonal matrix
whose diagonal entries are eigenvalues of A. The diagonal matrix � is easily determined by
the smaller matrix P, and the action of F and F∗ can be realized by fft and ifft. Therefore,
for any v ∈ R

N and α > 0, (αI + AA∗)−1v is easily computable by the fast Fourier transform.
In the following we perform some numerical experiments by applying algorithm 2.1 to

deblur various corrupted images. In our simulations the exact data b are contaminated by
random noise vectors e whose entries are normally distributed with zero mean. We use

δrel := ‖e‖2

‖b‖2

17

Inverse Problems 30 (2014) 045012 Q Jin and X Lu

(a) (b)

(c) (d)

Figure 3. Reconstruction of the Shepp–Logan phantom of size 200 × 200 blurred by
Gaussian PSF: (a) original image; (b) blurred image corrupted by Gaussian noise with
δrel = 1.25%; (c) reconstruction result by algorithm 2.1 with � = �0; (d) reconstruction
result by algorithm 2.1 with � = �1.

to denote the relative noise level. When applying algorithm 2.1, we use ξ0 = 0 and the
following two convex functions

�0(X) = 1
2‖X‖2

F and �1(X) = 1
2‖X‖2

F + TVI(X).

For those parameters in the algorithm we take τ = 1.001, μ0 = 0.4 and μ1 = 2. In each
step of the algorithm, the minimization problem associate with � is solved by performing 200
iterations of the algorithm FISTA in [3]. When using rule 3.1 to choose {αn} we take α0 = 1,
γ0 = 0.5, γ1 = 0.99 and ρ̂ = 2.5. In order to compare the quality of the restoration X̃, we
evaluate the peak signal-to-noise ratio (PSNR) value defined by

PSNR = 20 log10

√
mn max(X)

‖X − X̃‖F
,

where max(X) denotes the maximum possible pixel value of the true image X.
In figure 3 we plot the restoration results of the Shepp–Logan phantom of size 200 × 200

which is blurred by a 15 × 15 Gaussian PSF with standard derivation 30 and is contaminated
by Gaussian white noise with relative noise level δrel = 1.25%. The original and blurred
images are plotted in (a) and (b) of figure 3 respectively. In figure 3(c) we plot the restoration
result by algorithm 2.1 with � = �0. With such chosen �, the method in algorithm 2.1
reduces to the classical nonstationary iterated Tikhonov regularization (1.7) which has the
tendency to over-smooth solutions. The plot clearly indicates this drawback because of the
appearance of the ringing artifacts. The corresponding PSNR value is 21.3485. In figure 3(d)
we plot the restoration result by algorithm 2.1 with � = �1. Due to the appearance of the
total variation term in �1, the artifacts are significantly removed. In fact the corresponding
PSNR value is 24.8653; the computation terminates after nδ = 45 iterations and takes
55.8815 s.

18

Inverse Problems 30 (2014) 045012 Q Jin and X Lu

(a) (b)

(c) (d)

Figure 4. Restoration of the 256×256 Cameraman image blurred by motion: (a) original
images; (b) images blurred by motion and noise; (c) restoration by algorithm 2.1 with
� = �0; (d) restoration by algorithm 2.1 with � = �1.

In figure 4 we plot the restoration results of the 256×256 Cameraman image corrupted by
a 21 × 25 linear motion kernel generated by fspecial(‘motion’,30,40) and a Gaussian
white noise with relative noise level δrel = 0.2%. The original and blurred images are plotted
in (a) and (b) of figure 4 respectively. In (c) and (d) of figure 4 we plot the restoration results
by algorithm 2.1 with � = �0 and � = �1 respectively. The plot in (c) contains artifacts
that degrade the visuality, the plot in (d) removes the artifacts significantly. In fact the PSNR
values corresponding to (c) and (d) are 26.9158 and 29.8779 respectively. The computation
for (d) terminates after nδ = 35 iterations and takes 76.8809 s.

3.4. De-autoconvolution

We finally present some numerical simulations for nonlinear inverse problems by solving the
autoconvolution equation∫ t

0
x(t − s)x(s) ds = y(t) (3.3)

defined on the interval [0, 1]. The properties of the autoconvolution operator [F(x)](t) :=∫ t
0 x(t − s)x(s) ds have been discussed in [8]. In particular, as an operator from L2[0, 1]

to L2[0, 1], F is Fréchet differentiable; its Fréchet derivative and the adjoint are given
respectively by[

F ′(x)v
]
(t) = 2

∫ t

0
x(t − s)v(s) ds, v ∈ L2[0, 1],

[
F ′(x)∗w

]
(s) = 2

∫ 1

s
w(t)x(t − s) dt, w ∈ L2[0, 1].

We assume that (3.3) has a piecewise constant solution and use a noisy data yδ satisfying
‖yδ − y‖L2[0,1] = δ to reconstruct the solution. In figure 5 we report the reconstruction results

19

Inverse Problems 30 (2014) 045012 Q Jin and X Lu

0 0.5 1

2

3

4

5

exact solution

0 0.5 1

2

3

4

5

δ=0.01, nδ =12 and time =0.60733s

0 0.5 1

2

3

4

5

δ=0.001, nδ =16 and time =0.82163s

0 0.5 1

2

3

4

5

δ=0.0001, nδ =17 and time =0.87646s

Figure 5. Reconstruction results for the de-autoconvolution problem by algorithm 2.2
using noisy data with various noise levels.

by algorithm 2.2 using L(xn) = F ′(xn) and the � given in (2.28) with β = 20. All integrals
involved are approximated by the trapezoidal rule by dividing [0, 1] into N = 400 subintervals
of equal length. For those parameters involved in the algorithm, we take τ = 1.01, μ0 = 0.4/β

and μ1 = 1. We also take the constant function ξ0(t) ≡ 1/β as an initial guess. The sequence
{αn} is selected by rule 3.1 with A replaced by L(xn) in which α0 = 1, γ0 = 0.5, γ1 = 0.99 and
ρ̂ = 3. When the 1D-denoising algorithm FISTA in [2, 3] is used to solve the minimization
problems associated with �, it is terminated as long as the number of iterations exceeds 1200
or the error between two successive iterates is smaller than 10−5. We indicate in figure 5 the
number of iterations and the computational time for various noise levels δ; the results show
that algorithm 2.2 is indeed a fast method for this problem.

4. Conclusion

We proposed a nonstationary iterated method with convex penalty term for solving inverse
problems in Hilbert spaces. The main feature of our method is its splitting character, i.e. each
iteration consists of two steps: the first step involves only the operator from the underlying
problem so that the Hilbert space structure can be exploited, while the second step involves
merely the penalty term so that only a relatively simple strong convex optimization problem
needs to be solved. This feature makes the computation much efficient. When the underlying
problem is linear, we proved the convergence of our method in the case of exact data; in
case only noisy data are available, we introduced a stopping rule to terminate the iteration
and proved the regularization property of the method. We reported various numerical results
which indicate the good performance of our method.

Acknowledgments

QJ is partially supported by the DECRA grant no. DE120101707 of Australian Research
Council and XL is partially supported by National Science Foundation of China (nos. 11101316
and 91230108).

20

Inverse Problems 30 (2014) 045012 Q Jin and X Lu

References

[1] Arrow K J, Hurwicz L and Uzawa H 1958 Studies in Linear and Nonlinear Programming (Stanford
Mathematical Studies in the Social Sciences vol 2) (Stanford: Stanford University Press)

[2] Beck A and Teboulle M 2009 A fast iterative shrinkage-thresholding algorithm for linear inverse
problems SIAM J. Imaging Sci. 2 183–202

[3] Beck A and Teboulle M 2009 Fast gradient-based algorithms for constrained total variation image
denoising and deblurring problems IEEE Trans. Image Process. 18 2419–34

[4] Boţ R and Hein T 2012 Iterative regularization with a general penalty term—theory and application
to L1 and TV regularization Inverse Problems 28 104010

[5] Bregman L M 1967 The relaxation method for finding common points of convex sets and its
application to the solution of problems in convex programming USSR Comput. Math. Math.
Phys. 7 200–17

[6] Chambolle A and Pock T 2011 A first-order primal-dual algorithm for convex problems with
applications to imaging J. Math. Imaging Vis. 40 120–45

[7] Engl H W, Hanke M and Neubauer A 1996 Regularization of Inverse Problems (Dordrecht: Kluwer)
[8] Gorenflo R and Hofmann B 1994 On autoconvolution and regularization Inverse

Problems 10 353–73
[9] Gfrerer H 1987 An a posteriori parameter choice for ordinary and iterated Tikhonov regularization

of ill-posed problems leading to optimal convergence rates Math. Comput. 49 507–22
[10] Hanke M and Groetsch C W 1998 Nonstationary iterated Tikhonov regularization J. Optim. Theory

Appl. 97 37–53
[11] Hansen P C, Nagy J G and O’Leary D P 2006 Deblurring Images—Matrices, Spectra, and Filtering

(Philadelphia: SIAM)
[12] Jin Q 2000 On the iteratively regularized Gauss–Newton method for solving nonlinear ill-posed

problems Math. Comput. 69 1603–23
[13] Jin Q 2010 On a regularized Levenberg–Marquardt method for solving nonlinear inverse problems

Numer. Math. 115 229–59
[14] Jin Q and Hou Z Y 1999 On an a posteriori parameter choice strategy for Tikhonov regularization

of nonlinear ill-posed problems Numer. Math. 83 139–59
[15] Jin Q and Wang W 2013 Landweber iteration of Kaczmarz type with general non-smooth convex

penalty functionals Inverse Problems 29 085011
[16] Jin Q and Zhong M 2013 Nonstationary iterated Tikhonov regularization in Banach spaces with

general convex penalty terms Numer. Math. at press
[17] Micchelli C A, Shen L X and Xu Y S 2011 Proximity algorithms for image models: denoising

Inverse Problems 27 045009
[18] Press W H, Teukolsky S A, Vetterling W T and Flannery B P 2007 Numerical Recipes: The Art of

Scientific Computing 3rd edn (New York: Cambridge University Press)
[19] Raus T 1984 The principle of the residual in the solution of ill-posed problems Tartu Riikl. Ül.

Toimetised 672 16–26
[20] Rudin L, Osher S and Fatemi C 1992 Nonlinear total variation based noise removal algorithm

Phys. D 60 259–68
[21] Scherzer O, Engl H W and Kunisch K 1993 Optimal a posteriori parameter choice for Tikhonov

regularization for solving nonlinear ill-posed problems SIAM J. Numer. Anal. 30 1796–838
[22] Shor N Z 1985 Minimization Methods for Non-Differentiable Functions (Berlin: Springer)
[23] Zălinscu C 2002 Convex Analysis in General Vector Spaces (New York: World Scientific)

21

http://dx.doi.org/10.1137/080716542
http://dx.doi.org/10.1109/TIP.2009.2028250
http://dx.doi.org/10.1088/0266-5611/28/10/104010
http://dx.doi.org/10.1016/0041-5553(67)90040-7
http://dx.doi.org/10.1007/s10851-010-0251-1
http://dx.doi.org/10.1007/978-94-009-1740-8
http://dx.doi.org/10.1088/0266-5611/10/2/011
http://dx.doi.org/10.1090/S0025-5718-1987-0906185-4
http://dx.doi.org/10.1023/A:1022680629327
http://dx.doi.org/10.1137/1.9780898718874
http://dx.doi.org/10.1090/S0025-5718-00-01199-6
http://dx.doi.org/10.1007/s00211-009-0275-x
http://dx.doi.org/10.1007/s002110050442
http://dx.doi.org/10.1088/0266-5611/29/8/085011
http://dx.doi.org/10.1007/s00211-013-0594-9
http://dx.doi.org/10.1088/0266-5611/27/4/045009
http://dx.doi.org/10.1016/0167-2789(92)90242-F
http://dx.doi.org/10.1137/0730091
http://dx.doi.org/10.1007/978-3-642-82118-9

	1. Introduction
	2. Convergence analysis of the method
	2.1. Tools from convex analysis
	2.2. The method with exact data
	2.3. The method with noisy data
	2.4. Possible extension for nonlinear inverse problems

	3. Numerical simulations
	3.1. Integral equation of first kind in dimension 1
	3.2. Determine source term in Poisson equation
	3.3. Image deblurring
	3.4. De-autoconvolution

	4. Conclusion
	Acknowledgments
	References

