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Abstract This paper is devoted to the Levitin–Polyak well-posedness by pertur-
bations for a class of general systems of set-valued vector quasi-equilibrium prob-
lems (SSVQEP) in Hausdorff topological vector spaces. Existence of solution for
the system of set-valued vector quasi-equilibrium problem with respect to a parame-
ter (PSSVQEP) and its dual problem are established. Some sufficient and necessary
conditions for the Levitin–Polyak well-posedness by perturbations are derived by the
method of continuous selection. We also explore the relationships among these Lev-
itin–Polyak well-posedness by perturbations, the existence and uniqueness of solu-
tion to (SSVQEP). By virtue of the nonlinear scalarization technique, a parametric
gap function g for (PSSVQEP) is introduced, which is distinct from that of Peng
(J Glob Optim 52:779–795, 2012). The continuity of the parametric gap function
g is proved. Finally, the relations between these Levitin–Polyak well-posedness by
perturbations of (SSVQEP) and that of a corresponding minimization problem with
functional constraints are also established under quite mild assumptions.
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1 Introduction

Well-posedness plays an important role in the stability analysis and numerical methods
for optimization theory and applications. Since any algorithm can generate only an
approximating solution sequence which is meaningful only if the problem is well-
posed under consideration. Well-posedness for minimization problems [for short,
(MP)] was first introduced by Levitin and Polyak (1966) and Tykhonov (1966), respec-
tively. These are called Levitin–Polyak and Tykhonov well-posedness, respectively.
The well-posedness of (MP) implies the existence and uniqueness of solutions of
(MP), and each approximating solution sequence has a subsequence which converges
strongly to a solution. The study of Levitin–Polyak type well-posedness for scalar con-
vex optimization probiems with functional constraints was initiated by Konsulova and
Revalski (1994). In 1981, Lucchetti and Patrone (1981) introduced the well-posedness
for variational inequalities, which is a generalization of the Tykhonov well-posedness
of (MP). Lignola and Morgan (2000) also introduced another well-posedness for vari-
ational inequalities, which is distinct from that in Lucchetti and Patrone (1981). Since
then, many authors investigated the well-posedness and well-posedness in the gener-
alized sense for optimization, variational inequalities and equilibrium problems (see,
e.g., Ansari et al. 2000; Ceng et al. 2008; Chen and Wan 2011; Chen et al. 2011,
2012; Fang et al. 2008; Furi and Vignoli 1970; Giannessi 1998, 2000; Hu et al. 2010b;
Lalitha and Bhatia 2010; Lignola and Morgan 2001; Li and He 2005 and the references
therein). Recently, Huang and Yang (2006, 2007) and Huang et al. (2009) studied the
Levitin–Polyak type well-posedness for generalized variational inequality problems
with functional constraints as well as an abstract set constraint. They also introduced
several types of generalized Levitin–Polyak well-posednesses and gave various cri-
teria and characterizations for these types of well-posednesses in Huang and Yang
(2007), Huang et al. (2009). Further, Jiang et al. (2009) discussed the Levitin–Polyak
well-posedness of generalized quasivariational inequalities with explicit constraints,
introduced four types of Levitin–Polyak well-posednesses and gave various criteria
and characterizations for these types of well-posednesses. Huang and Yang (2010)
and Xu et al. (2008) extended the results of Huang and Yang (2007), Huang et al.
(2009), Jiang et al. (2009) to (generalized) vector variational inequality problems
with abstract set and functional constraints. In Hu et al. (2010a), obtained the Lev-
itin–Polyak well-posedness of variational inequalities and optimization problems with
variational inequality constraints in Banach spaces and got some criteria and charac-
terizations for these Levitin–Polyak well-posedness. They also investigated the rela-
tionships among the Levitin–Polyak well-posedness of the problem and the existence,
uniqueness of its solution. Lemaire et al. (2002) introduced the well-posedness by
perturbations for variational inequalities and obtained some metric characterizations

123



Levitin–Polyak well-posedness by perturbations 35

for this well-posedness. In 2010, Fang et al. (2010) considered the well-posedness by
perturbations for mixed variational inequality problems in Banach spaces and derived
some metric characterizations of the well-posedness by perturbations. They estab-
lished the equivalence between the well-posedness of mixed variational inequalities
and that of a corresponding inclusion problem and a fixed point problem and obtained
the relationship among the well-posedness by perturbations and the existence and
uniqueness of its solution.

Very recently, Huang et al. (2007) and Li et al. (2006) studied the generalized
vector equilibrium problems. By virtue of a nonlinear scalarization function, the
gap functions for generalized vector equilibrium problems were established. Fur-
ther, existence theorems for generalized vector equilibrium problems are derived
by using the gap function. Li and Li (2009) also introduced two type of Lev-
itin–Polyak well-posedness for equilibrium problems with abstract set constraints.
Motivated by Li and Li (2009), Peng et al. (2009) introduced four type of Levitin–
Polyak well-posedness for vector equilibrium problems with abstract set and func-
tional constraints. Hu et al. (2010b) investigated the well-posedness and generalized
well-posedness for a system of equilibrium problems, obtained some metric char-
acterizations for these well-posedness. They also proved that the well-posedness of
system of equilibrium problems is equivalent to the existence and uniqueness of its
solution. Peng and Wu (2010) also explored the generalized Tykhonov well-posed-
ness for system of vector quasi-equilibrium problems and gave some metric charac-
terizations for these well-posedness in locally convex Hausdorff topological vector
spaces.

However, to the best of our knowledge, there are little results concerning the exis-
tence of solutions and Levitin–Polyak well-posedness by perturbations for general
systems of set-valued vector quasi-equilibrium problems [for short, (SSVQEP)].

Inspired and motivated by the researches going on in this direction, the aim of this
paper is to introduce and investigate Levitin–Polyak well-posedness by perturbations
for a new class of (SSVQEP) in Hausdorff topological vector spaces.

Firstly, existence theorems of solutions for the system of set-valued vector quasi-
equilibrium problem with respect to a parameter [for short, (PSSVQEP)] and its dual
problem (DPSSVQEP) are established under some suitable conditions.

Secondly, we introduce the notions of type I (resp., type II, generalized type I and
generalized type II) Levitin–Polyak well-posedness by perturbations for (SSVQEP) in
topological vector spaces. Some metric characterizations of the type I (resp., type II,
generalized type I and generalized type II) Levitin–Polyak well-posedness by pertur-
bations are derived under some suitable conditions. We also explore the relationships
among the type I (resp., type II, generalized type I and generalized type II) Levitin–
Polyak well-posedness by perturbations, the existence and uniqueness of solution to
(SSVQEP). By virtue of the nonlinear scalarization function introduced by Chen et al.
(2005a), a parametric gap function g for (PSSVQEP) is introduced, which is distinct
from that of Peng et al. (2012), and then the continuity of the parametric gap function
g is derived under quite mild assumptions.

Finally, we establish the equivalence between the type I (resp., type II, gener-
alized type I and generalized type II) Levitin–Polyak well-posedness by perturba-
tions of (SSVQEP) and that of a corresponding minimization problem with functional
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constraints under quite mild assumptions. The results presented in this paper are new,
unifying and improving some known results in the literature.

2 Preliminaries

Throughout this paper, without other specifications, let I be an index set, R be the
set of real numbers. Let

∧
(the space of parameters) be a metric space, Zi be topo-

logical vector space, Xi and Yi be two locally convex Hausdorff topological vector
spaces for i ∈ I, Hi and Ki be nonempty convex subsets of Xi and Yi , respectively. Let
X = ∏

i∈I Xi ,Y = ∏
i∈I Yi , H = ∏

i∈I Hi , K = ∏
i∈I Ki and X−i = ∏

j∈I, j �=i X j .

Denote the element of X−i by x−i and so x ∈ X denote by x = (x−i , xi ) ∈ X−i × Xi .
We always denote 2X by the family of all nonempty subsets of X . Let �i : H →
2Hi , Ti : H → 2Ki , �i : H × Hi → 2Zi , Fi : H × K × Hi → 2Zi and Ci : H → 2Zi

be set-valued mappings such that, for each x ∈ H,Ci (x) is a proper closed convex
and pointed cone in Zi with intCi (x) �= ∅ for each i ∈ I .

We consider the following system of set-valued vector quasi-equilibrium problem
[for short, (SSVQEP)]:

Find x∗ = (x∗
i )i∈I ∈ H such that, for each i ∈ I, x∗

i ∈ �i (x∗) and there exists
y∗

i ∈ Ti (x∗) satisfying

Fi (x
∗, y∗, xi )+�i (x

∗, xi ) �⊆ −intCi (x
∗), ∀xi ∈ �i (x

∗), (2.1)

and the dual system of set-valued vector quasi-equilibrium problem [for short,
(DSSVQEP)]:

Find x∗ = (x∗
i )i∈I ∈ H such that, for each i ∈ I, x∗

i ∈ �i (x∗) and there exists
y∗

i ∈ Ti (x∗) satisfying

Fi (x
∗, y∗, xi )+�i (x

∗, xi ) ⊆ −Ci (x
∗), ∀xi ∈ �i (x

∗). (2.2)

If the mappings �i : H → 2Hi and Ti : H → 2Ki are perturbed by a parameter
p ∈ ∧

, that is, �i : H × ∧ → 2Hi and Ti : H × ∧ → 2Ki such that, for some
p∗ ∈ ∧

, �i (x, p∗) = �i (x) and Ti (x, p∗) = Ti (x) for all x ∈ H , then, for any given
p ∈ ∧

,we define a parametric system of set-valued vector quasi-equilibrium problem
[for short, (PSSVQEP)]:

Find x∗ = (x∗
i )i∈I ∈ H such that, for each i ∈ I, x∗

i ∈ �i (x∗, p) and there exists
y∗

i ∈ Ti (x∗, p) satisfying

Fi (x
∗, y∗, xi )+�i (x

∗, xi ) �⊆ −intCi (x
∗), ∀xi ∈ �i (x

∗, p),

and the dual parametric system of set-valued vector quasi-equilibrium problem [for
short, (DPSSVQEP)]:

Find x∗ = (x∗
i )i∈I ∈ H such that, for each i ∈ I , x∗

i ∈ �i (x∗, p) and there exists
y∗

i ∈ Ti (x∗, p) satisfying

Fi (x
∗, y∗, xi )+�i (x

∗, xi ) ⊆ −Ci (x
∗), ∀xi ∈ �i (x

∗, p).
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Levitin–Polyak well-posedness by perturbations 37

We denote the solution sets of (SSVQEP), (DSSVQEP), (PSSVQEP) and
(DPSSVQEP) by S, Sd , S(p) and S(p)d , respectively.

Special cases are as follows:

(1) If, for each i ∈ I, �i ≡ 0, then (SSVQEP) and (DSSVQEP) are reduced to the
following:

Find x∗ ∈ H such that, for each i ∈ I, x∗
i ∈ �i (x∗) and there exists y∗

i ∈ Ti (x∗)
satisfying

Fi (x
∗, y∗, xi ) �⊆ −intCi (x

∗), ∀xi ∈ �i (x
∗), (2.3)

and its dual problem:
Find x∗ ∈ H such that, for each i ∈ I, x∗

i ∈ �i (x∗) and there exists y∗
i ∈ Ti (x∗)

satisfying

Fi (x
∗, y∗, xi ) ⊆ −Ci (x

∗), ∀xi ∈ �i (x
∗), (2.4)

which have been studied by Homidan et al. (2007) and references therein.

(2) If, for each i ∈ I, Fi ≡ 0, then (SSVQEP) and (DSSVQEP) are reduced to the
following:

Find x∗ ∈ H such that, for each i ∈ I, x∗
i ∈ �i (x∗) and there exists y∗

i ∈ Ti (x∗)
satisfying

�i (x
∗, xi ) �⊆ −intCi (x

∗), ∀xi ∈ �i (x
∗), (2.5)

and its dual problem:
Find x∗ ∈ H such that, for each i ∈ I , x∗

i ∈ �i (x∗) and there exists y∗
i ∈ Ti (x∗)

satisfying

�i (x
∗, xi ) ⊆ −Ci (x

∗), ∀xi ∈ �i (x
∗). (2.6)

These problems have been studied by Ansari et al. (2002), Fang et al. (2006) and
references therein.

(3) If, for each i ∈ I, �i ≡ 0, the mapping Fi reduces to a single-valued mapping,
then (SSVQEP) and (DSSVQEP) are reduced to the following:

Find x∗ ∈ H such that, for each i ∈ I, x∗
i ∈ �i (x∗) and there exists y∗

i ∈ Ti (x∗)
satisfying

Fi (x
∗, y∗, xi ) �∈ −intCi (x

∗), ∀xi ∈ �i (x
∗), (2.7)

and its dual problem:
Find x∗ ∈ H such that, for each i ∈ I , x∗

i ∈ �i (x∗) and there exists y∗
i ∈ Ti (x∗)

satisfying

Fi (x
∗, y∗, xi ) ∈ −Ci (x

∗), ∀xi ∈ �i (x
∗), (2.8)

which have been studied by Ansari et al. (2000) and references therein.
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(4) If the index set I is a singled set, FI ≡ 0, then (SSVQEP) and (DSSVQEP) are
reduced to the following:

Find x∗ ∈ H such that x∗ ∈ �I (x∗) and

�I (x
∗, x) �⊆ −intCI (x

∗), ∀x ∈ �I (x
∗), (2.9)

and its dual problem:
Find x∗ ∈ H such that x∗ ∈ �I (x∗) and

�I (x
∗, x) ⊆ −CI (x

∗), ∀x ∈ �I (x
∗), (2.10)

which have been studied by Fu (2005) and references therein.

(5) If the index set I is a singled set, �I ≡ 0, the mapping FI reduces to a single-
valued mapping, then (SSVQEP) is reduced to the following:

Find x∗ ∈ H such that x∗ ∈ �I (x∗) and there exists y∗ ∈ TI (x∗) satisfying

FI (x
∗, y∗, x) �∈ −intCI (x

∗), ∀x ∈ �I (x
∗), (2.11)

which has been studied by Peng et al. (2012) and references therein.
In brief, for appropriate choice of I and the mappings �i , Ti , Fi , �i , one can get

a wide class of variational models such as variational inequalities (inclusions), fixed
point problems, optimization problems and so on. These suffice that (SSVQEP) and
(DSSVQEP) are more general and include some classes of variational problems and
related optimization problems as special cases.

We first recall some definitions and lemmas which are needed in our main results.

Definition 2.1 Let E1, E2 be topological vector spaces, � : E1 × E1 → 2E2 and
C : E1 → 2E2 be set-valued mappings such that, for each x ∈ E1,C(x) is a proper
closed convex and pointed cone in E2 with intC(x) �= ∅. � is said to be generalized
C-convex with respect to the second argument if, for any x, x̂, x̃ ∈ E1 and t ∈ [0, 1],

�(x, t x̂ + (1 − t)x̃) ⊆ t�(x, x̂)+ (1 − t)�(x, x̃)− C(x).

Definition 2.2 (Chen et al. 2005b,a) Let E1, E2 be locally convex Hausdorff topo-
logical vector spaces, C : E1 → 2E2 be a set-valued mapping such that, for each
x ∈ E1,C(x) is a proper closed convex and pointed cone in E2 with intC(x) �= ∅.
The nonlinear scalarization function ξe : E1 × E2 → R is defined by

ξe(x, y) = inf{z ∈ R : y ∈ ze(x)− C(x)}, ∀(x, y) ∈ E1 × E2,

where e : E1 → E2 is a vector-valued mapping and e(x) ∈ intC(x) for all x ∈ E1.

Lemma 2.1 (Chen et al. 2005b,a) Let E1, E2 be locally convex Hausdorff topological
spaces, C : E1 → 2E2 be a set-valued mapping such that, for each x ∈ E1,C(x) is a
proper closed convex and pointed cone in E2 with intC(x) �= ∅ and e : E1 → E2 be
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Levitin–Polyak well-posedness by perturbations 39

vector-valued such that e(x) ∈ intC(x) for all x ∈ E1. For any x ∈ E1, y ∈ E2 and
r ∈ R, the following results hold:

(1) ξe(x, y) < r ⇔ y ∈ re(x)− intC(x);
(2) ξe(x, y) ≤ r ⇔ y ∈ re(x)− C(x);
(3) ξe(x, y) ≥ r ⇔ y �∈ re(x)− intC(x);
(4) ξe(x, y) > r ⇔ y �∈ re(x)− C(x);
(5) ξe(x, y) = r ⇔ y ∈ re(x) − ∂C(x), particularly, ξe(x, re(x)) = r and

ξe(x, 0) = 0, where ∂C(x) is the boundary of C(x).

Lemma 2.2 (Chen et al. 2000, 2005a) Let E1, E2 be two locally convex Hausdorff
topological vector spaces, and let C : E1 → 2E2 be a set-valued mapping such
that, for each x ∈ E1,C(x) is a proper closed convex and pointed cone in E2 with
intC(x) �= ∅, Let e : E1 → E2 be a continuous selection from the set-valued map
intC(·). Define a set-valued mapping� : E1 → 2E2 by�(x) = E2 \ intC(x) for any
x ∈ E1. Then we have the following:

(1) If the mappings C(·) and �(·) are B-u.s.c on E1, then ξe(·, ·) is continuous on
E1 × E2;

(2) The mapping ξe(x, ·) : E2 → R is convex;
(3) If �(·) is B-u.s.c on E1, then ξe(·, ·) is upper semicontinuous on E1 × E2;
(4) If C(·) is B-u.s.c on E1, then ξe(·, ·) is lower semicontinuous on E1 × E2.

Definition 2.3 (Kuratowski 1968) Let A and B be nonempty subsets of X . The Haus-
dorff metric H (·, ·) between A and B is defined by

H (A, B) = max{e(A, B), e(B, A)},

where e(A, B) = supa∈A d(a, B) is the excess of set A to set B and d(a, B) =
infb∈B ‖a − b‖.

Definition 2.4 (Kuratowski 1968) Let A be a nonempty subset of X . The Kuratowski
measure of noncompactness M of the set A is defined by

M (A) = inf{ε > 0 : A ⊂ ∪n
i=1 Ai , diamAi < ε, i = 1, 2, . . . , n},

where diam stands for the diameter of a set.

Remark 2.1 (Fang et al. 2010) If L1,L2 are nonempty closed subset of X,L1 is
compact and L1 ⊆ L2, then the following hold:

(1) M (L1) = 0;
(2) M (L2) ≤ 2H (L2,L1) = 2e(L2,L1).

Definition 2.5 (Aubin and Ekeland 1984; Berge 1963) Let
∨

be a Hausdorff topo-
logical vector space and E be a locally convex Hausdorff topological vector space. A
set-valued mapping ψ : ∨ → 2E is said to be:

123
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(1) upper semicontinuous (for short, u.s.c) at υ0 ∈ ∨
if, for each open set V with

ψ(υ0) ⊂ V , there exists δ > 0 such that

ψ(υ) ⊂ V, ∀υ ∈ B(υ0, δ);

(2) lower semicontinuous (for short, l.s.c) at υ0 ∈ ∨
if, for each open set V with

ψ(υ0)
⋂

V �= ∅, there exists δ > 0 such that

ψ(υ) ∩ V �= ∅, ∀υ ∈ B(υ0, δ);

(3) closed if the graph of ψ is closed, i.e., the set Gr(ψ) = {(ζ, υ) ∈ ∨ ×E : ζ ∈
ψ(υ)} is closed in

∨ ×E ;
(4) lower semicontinuous (resp., upper semicontinuous) on

∨
if it is l.s.c (resp. u.s.c)

at each υ ∈ ∨
;

(5) continuous on
∨

if it is both l.s.c and u.s.c on
∨

.

Remark 2.2 (Aubin and Ekeland 1984; Berge 1963)

(1) ψ is l.s.c at υ0 ∈ ∨
if and only if, for any net {υα} ⊆ ∨

with υα → υ0 and
ζ0 ∈ ψ(υ0), there exists a net {ζα} ⊆ E with ζα ∈ ψ(υα) for all α such that
ζα → ζ0.

(2) If ψ is compact-valued, then ψ is u.s.c at υ0 ∈ ∨
if and only if, for any net

{υα} ⊆ ∨
with υα → υ0 and {ζα} ⊆ E with ζα ∈ ψ(υα) for all α, there exists

ζ0 ∈ ψ(υ0) and a subnet {ζβ} of {ζα} such that ζβ → ζ0.
(3) If ψ is u.s.c and closed-valued, then ψ is closed. Conversely, if ψ is closed and

E is compact, then ψ is u.s.c.

Definition 2.6 (Ding et al. 1992; Li and He 2005) Let φ : X → Z be vector-valued
mapping and � : X → 2Z be set-valued mapping.

(1) φ is called a selection of � on X if

φ(x) ∈ �(x), ∀x ∈ X.

(2) φ is called a continuous selection of� on X ifφ is a selection of� and continuous
on X .

Remark 2.3 If� is a continuous set-valued mapping on X , then there exists a selection
φ of � which is continuous on X . For more information on selection and continuous
selection of set-valued mappings see, for instance, Ding et al. (1992), Chen (1988),
Gutev (1998) and the references therein.

Lemma 2.3 (Ansari et al. 2000) Let Hi be nonempty convex subset of Hausdorff
topological vector space Xi for each i ∈ I and Mi : H → 2Hi be a convex-valued
mapping for each i ∈ I , where H = ∏

i∈I Hi . Assume that the following conditions
hold:

(i) for each x ∈ H, xi �∈ Mi (x) for each i ∈ I ;
(ii) for each xi ∈ Hi ,M−1

i (xi ) is an open subset of H for each i ∈ I ;
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Levitin–Polyak well-posedness by perturbations 41

(iii) there exist a nonempty compact subset � of H for each i ∈ I and a nonempty
compact convex subset Zi of Hi such that, for any x ∈ H \�, there exists j ∈ I
satisfying

M j (x)
⋂

Z j �= ∅.
Then there exists x∗ ∈ H such that Mi (x∗) = ∅ for each i ∈ I.

3 Existence theorems for (PSSVQEP)

In this section, we mainly study the existence of solution to the parametric systems
of set-valued vector quasi-equilibrium problems [for short, (PSSVQEP)] and its dual
(DPSSVQEP) under some suitable conditions.

Theorem 3.1 Let� be a metric space and, for each i ∈ I , let Zi be topological vec-
tor space, Hi and Ki be nonempty closed convex subsets of locally convex Hausdorff
topological vector spaces Xi and Yi , respectively. Let Fi : H × K × Hi → 2Zi ,Ci :
H → 2Zi be two set-valued mappings such that, for each x ∈ H,Ci (x) is a proper
closed convex and pointed cone in Zi with intCi (x) �= ∅, �i : H × � → 2Hi , Ti :
H × � → 2Ki be two nonempty convex-valued mappings and �i : H × Hi → 2Zi

be compact-valued and upper semicontinuous with respect to the first argument and
generalized Ci -convex with respect to the second argument, where H = ∏

i∈I Hi and
K = ∏

i∈I Ki . Assume that the following conditions are satisfied:

(i) for each i ∈ I, xi ∈ Hi , yi ∈ Ki , �
−1
i (xi ) and T −1

i (yi ) are open sets of H ×�;
(ii) for each i ∈ I, Wi (·) = Zi \ −intCi (·) is closed on H;

(iii) for each i ∈ I, x ′
i ∈ Hi , the mapping (x, y) �→ Fi (x, y, x ′

i ) is compact-valued
and u.s.c. and, for each x ∈ H and yi ∈ Ti (x), the mapping x ′

i �→ Fi (x, y, x ′
i )

is generalized Ci -convex;
(iv) there exist nonempty compact sets� ⊆ H, � ⊆ K and nonempty compact convex

sets Ui ⊆ Hi , Li ⊆ Ki for each i ∈ I such that, for any (x, y) ∈ H×K \(�×�),
there exists i ′ ∈ I with xi ′ ∈ Ui ′

⋂
�i ′(x, p) and yi ′ ∈ Li ′

⋂
Ti ′(x, p) for any

p ∈ � satisfying

Fi ′(x, y, xi ′)+�i ′(x, xi ′) ⊆ −intCi ′(x).

Then, for each p ∈ �, the solution set S(p) of (PSSVQEP) is nonempty.

Proof Let p ∈ �. For each i ∈ I,we define two set-valued mappingsϒi : H × K →
2Hi and �i : H × K → 2Hi ×Ki by, for any (x, y) ∈ H × K ,

ϒi (x, y) = {ωi ∈ Hi : Fi (x, y, ωi )+�i (x, ωi ) ⊆ −intCi (x)} ,
and

�i (x, y)

=
{
(�i (x, p)

⋂
ϒi (x, y))× Ti (x, p), (x, y) ∈ {(x, y) : xi ∈ �i (x, p), yi ∈ Ti (x, p)},

�i (x, p)× Ti (x, p), (x, y) �∈ {(x, y) : xi ∈ �i (x, p), yi ∈ Ti (x, p)},

respectively. It follows that the properties of �i are related to that of ϒi .
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Now, we show that, for each i ∈ I, ωi ∈ Hi , ϒi is convex-valued and ϒ−1
i (ωi ) is

an open subset of H × K . For this, we first prove that ϒi is convex-valued. For each
(x, y) ∈ H × K , taking ω̃i , ω̂i ∈ ϒi (x, y) arbitrarily, one has

Fi (x, y, ω̃i )+�i (x, ω̃i ) ⊆ −intCi (x), (3.1)

Fi (x, y, ω̂i )+�i (x, ω̂i ) ⊆ −intCi (x), (3.2)

and so tω̃i + (1 − t)ω̂i ∈ Hi for all t ∈ [0, 1], since Hi is convex. By the generalized
Ci -convexity of �i with respect to the second argument, we have

�i (x, tω̃i + (1 − t)ω̂i ) ⊆ t�i (x, ω̃i )+ (1 − t)�i (x, ω̂i )− Ci (x). (3.3)

It follows from the condition (iii) that

Fi (x, y, tω̃i + (1 − t)ω̂i ) ⊆ t Fi (x, y, ω̃i )+ (1 − t)Fi (x, y, ω̂i )− Ci (x). (3.4)

Thus, from (3.1)–(3.4), it follows that

�i (x, tω̃i + (1 − t)ω̂i )+ Fi (x, y, tω̃i + (1 − t)ω̂i )

⊆ t (Fi (x, y, ω̃i )+�i (x, ω̃i ))+ (1 − t)(Fi (x, y, ω̂i )+�i (x, ω̂i ))− Ci (x)

⊆ −t intCi (x)− (1 − t)intCi (x)− Ci (x)

⊆ −intCi (x).

Therefore, tω̃i + (1 − t)ω̂i ∈ ϒi (x, y) for all t ∈ [0, 1], that is, ϒi (x, y) is a convex
subset of Hi .

Next, we prove that, for each i ∈ I and ωi ∈ Hi , ϒ
−1
i (ωi ) is an open subset of

H × K . It suffices that the complementary set of ϒ−1
i (ωi ), denoted by

[
ϒ−1

i (ωi )
]c = {(x, y) ∈ H × K : Fi (x, y, ωi )+�i (x, ωi ) �⊆ −intCi (x)} ,

is an closed subset of H × K . Take a sequence {(xn, yn)} ⊆ [ϒ−1
i (ωi )]c such that

(xn, yn) → (x0, y0). Since H × K is closed, we obtain (x0, y0) ∈ H × K . Now, we
assert that (x0, y0) ∈ [ϒ−1

i (ωi )]c. If not, (x0, y0) �∈ [ϒ−1
i (ωi )]c and so we have

Fi (x0, y0, ωi )+�i (x0, ωi ) ⊆ −intCi (x0). (3.5)

In view of {(xn, yn)} ⊆ [ϒ−1
i (ωi )]c, one can conclude

Fi (xn, yn, ωi )+�i (xn, ωi ) �⊆ −intCi (xn). (3.6)

Thus there exist ςn
i ∈ Fi (xn, yn, ωi ) and τ n

i ∈ �i (xn, ωi ) such that

ςn
i + τ n

i �∈ −intCi (xn),
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that is,

ςn
i + τ n

i ∈ Wi (xn). (3.7)

Since�i : H×Hi → 2Zi is compact-valued and upper semicontinuous with respect to
the first argument, it follows from the condition (iii) that there exist ς0

i ∈ Fi (x0, y0, ωi )

and τ 0
i ∈ �i (x0, ωi ) such that ςn

i → ς0
i and τ n

i → τ 0
i , respectively. By the condition

(ii), we know that (x0, ς
0
i + τ 0

i ) ∈ Gr(W ), which implies that

ς0
i + τ 0

i �∈ −intCi (x0). (3.8)

This contradicts (3.5). Consequently, [ϒ−1
i (ωi )]c is a closed set and soϒ−1

i (ωi ) is an
open set in H × K .

Finally, we verify that�i satisfies the conditions of Lemma 2.3 for each i ∈ I . From
the definition of �i , it is easy to see that, for each i ∈ I, (x, y) ∈ H × K ,�i (x, y)
is a convex subset of Hi × Ki and so (xi , yi ) �∈ �i (x, y). By the condition (i), we
know that, for each i ∈ I, (x̄i , ȳi ) ∈ Hi × Ki ,�

−1
i (x̄i , ȳi ) is an open subset of

H × K . By the condition (iv), there exist nonempty compact sets� ⊆ H, � ⊆ K and
nonempty compact convex sets Ui ⊆ Hi , Li ⊆ Ki for each i ∈ I such that, for any
(x, y) ∈ H × K \(�×�), there exists i ′ ∈ I with (xi ′ , yi ′) ∈ (Ui ′ × Li ′)

⋂
�i ′(x, y),

that is, (Ui ′ × Li ′)
⋂
�i ′(x, y) �= ∅. Again, from Lemma 2.3, this yields that there

exists (x∗, y∗) ∈ H × K such that

�i (x
∗, y∗) = ∅, ∀i ∈ I. (3.9)

Since �i : H ×� → 2Hi and Ti : H ×� → 2Ki are two nonempty convex-valued
mappings for each i ∈ I , we have

(x∗, y∗) ∈ {(x, y) : xi ∈ �i (x, p), yi ∈ Ti (x, p)}, ∀i ∈ I,

and
(
�i (x

∗, p)
⋂
ϒi (x

∗, y∗)
)

× Ti (x
∗, p) = ∅, ∀i ∈ I.

Moreover, one has

ϒi (x
∗, y∗) = ∅, ∀i ∈ I,

Therefore, for each p∈�, there exists x∗ ∈ H such that, for each i ∈ I, x∗
i ∈�i (x∗, p)

and there exists y∗
i ∈ Ti (x∗, p) satisfying

Fi (x
∗, y∗, xi )+�i (x

∗, xi ) �⊆ −intCi (x
∗), ∀xi ∈ �i (x

∗, p),

that is, for each p ∈ �, the solutions set S(p) of (PSSVQEP) is nonempty. This
completes the proof. ��

Similarly, we can show that the solution set for (DPSSVQEP) is nonempty.
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Theorem 3.2 Let � be a metric space and, for each i ∈ I , Zi be topological vector
space, Hi and Ki be nonempty convex subsets of locally convex Hausdorff topologi-
cal vector spaces Xi and Yi , respectively. Let Fi : H × K × Hi → 2Zi ,Ci : H →
2Zi be two set-valued mappings such that Ci is lower semicontinuous and, for each
x ∈ H,Ci (x) is a proper closed convex and pointed cone in Zi with intCi (x) �=
∅, �i : H × � → 2Hi , Ti : H × � → 2Ki be two closed convex-valued mappings
and � : H × Hi → 2Zi be lower semicontinuous with respect to the first argument
and generalized −Ci -convex with respect to the second argument. Assume that the
following conditions are satisfied:

(i) for each i ∈ I, xi ∈ Hi , yi ∈ Ki , �
−1
i (xi ) and T −1

i (yi ) are open sets of H ×�;
(ii) for each i ∈ I, x ′

i ∈ Hi , the mapping (x, y) �→ Fi (x, y, x ′
i ) is lower semicon-

tinuous and, for each x ∈ H and yi ∈ Ti (x), the mapping x ′
i �→ Fi (x, y, x ′

i ) is
generalized −Ci -convex;

(iii) there exist nonempty compact sets � ⊆ H, � ⊆ K and nonempty compact con-
vex sets Ui ⊆ Hi , Li ⊆ Ki for each i ∈ I such that, for any (x, y) ∈ H × K \
(�×�), there exists i ′ ∈ I with xi ′ ∈ Ui ′

⋂
�i ′(x, p) and yi ′ ∈ Li ′

⋂
Ti ′(x, p)

for each p ∈ � satisfying

Fi ′(x, y, xi ′)+�i ′(x, xi ′) �⊆ −Ci ′(x).

Then, for each p ∈ �, the solutions set S(p)d of (DPSSVQEP) is nonempty.

Proof Let p ∈ �. For each i ∈ I, we define the mapping ϒi : H × K → 2Hi by

ϒi (x, y) = {ωi ∈ Hi : Fi (x, y, ωi )+�i (x, ωi ) �⊆ −Ci (x)}, ∀(x, y) ∈ H × K .

The rest proof is similar to that of Theorem 3.1 and so we omit it here. This completes
the proof. ��
Remark 3.1 If p = p∗, then it follows from Theorems 3.1 and 3.2 that the solution
sets of (SSVQEP) and (DSSVQEP) are nonempty.

4 Levitin–Polyak well-posedness for (SSVQEP)

In this section, we introduce the notions of type I (resp., type II, generalized type I and
generalized type II) Levitin–Polyak well-posedness by perturbations for (SSVQEP)
and discuss some metric characterizations of these Levitin–Polyak well-posedness
and the relationships between these Levitin–Polyak well-posedness and the existence
and uniqueness of a solution to (SSVQEP).

Definition 4.1 Let
∧

be a metric space, and {pn} ⊂ ∧
such that pn → p∗.

(1) A sequence {xn} ⊂ H is said to be the type I Levitin–Polyak (for short, LP)
approximating solution sequence corresponding to {pn} for (SSVQEP) if, for
each i ∈ I, xn

i ∈ �i (xn, pn) and there exist a sequence of nonnegative real
numbers {εn} with εn → 0 and yn

i ∈ Ti (xn, pn) such that
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Fi
(
xn, yn, ωi

) +�i
(
xn, ωi

) + εnei
(
xn) �⊆ −intCi (x

n),

∀ωi ∈ �i
(
xn, pn)

, n ∈ N .

(2) A sequence {xn} ⊂ H is said to be the type II LP approximating solution sequence
corresponding to {pn} for (SSVQEP) if there exist a sequence of nonnegative real
numbers {εn} with εn → 0 and yn

i ∈ Ti (xn, pn) for each i ∈ I such that

di
(
xn

i , �i
(
xn, pn)) ≤ εn

and

Fi
(
xn, yn, ωi

) +�i
(
xn, ωi

) + εnei
(
xn) �⊆ −intCi

(
xn)

,

∀ωi ∈ �i
(
xn, pn)

, n ∈ N .

Remark 4.1 It is easy to see that any type I LP approximating solution sequence cor-
responding to {pn} for (SSVQEP) is the type II LP approximating solution sequence
corresponding to {pn} for (SSVQEP).

Definition 4.2 (1) (SSVQEP) is said to be the type I (resp., type II) LP well-posed by
perturbations if it has a unique solution and, for any {pn} ⊂ ∧

with pn → p∗,
each type I (resp., type II) LP approximating solution sequence corresponding to
{pn} of (SSVQEP) converges strongly to the unique solution.

(2) (SSVQEP) is said to be the generalized type I (resp., type II) LP well-posed
by perturbations if the solution set S of (SSVQEP) is nonempty and, for any
{pn} ⊂ ∧

with pn → p∗, each type I (resp., type II) LP approximating solu-
tion sequence corresponding to {pn} of (SSVQEP) has a subsequence which
converges strongly to some point of S.

Remark 4.2 (1) The type I (resp., type II, generalized type I and generalized type II)
LP well-posedness by perturbations for (SSVQEP) implies that the solution set
S of (SSVQEP) is nonempty and compact.

(2) Each type I LP well-posedness by perturbations for (SSVQEP) is the type II
(resp., generalized type I and generalized type II) LP well-posedness by per-
turbations for (SSVQEP). Moreover, any generalized type I LP well-posedness
by perturbations for (SSVQEP) is the generalized type II LP well-posedness by
perturbations for (SSVQEP).

Remark 4.3 (1) If, for each i ∈ I, the mappings Ti ≡ 0, Fi ≡ 0, �i (x, p) = �i (x)
for all (x, p) ∈ X × ∧

and �i is a single-valued mapping, then the generalized
type II LP well-posedness by perturbations for (SSVQEP) is reduced to the
generalized Tykhonov well-posedness defined by Peng and Wu (2010).

(2) If I is a single set, the mappings Ti (x, p) ≡ T (x), �i (x, p) ≡ �(x) for all
(x, p) ∈ X × ∧

, �I ≡ 0 and FI : H × K × H → Z I is a vector-valued
mapping, then the (generalized) type II LP well-posedness by perturbations for
(SSVQEP) is reduced to the type I LP well-posedness for generalized vector
equilibrium problem defined by Peng et al. (2012).
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In order to investigate the metric characterizations of well-posedness of (SSVQEP),
for any ε > 0, we introduce the following approximating solution sets for (SSVQEP):

�1(ε) =
⋃

p∈B(p∗,ε)
{x ∈ H : ∀i ∈ I, xi ∈ �i (x, p), ∃yi ∈ Ti (x, p) s.t.

Fi (x, y, ωi )+�i (x, ωi )+ εei (x) �⊆ −intCi (x), ∀ωi ∈ �i (x, p)}

and

�2(ε) =
⋃

p∈B(p∗,ε)
{x ∈ H : ∀i ∈ I, di (xi , �i (x, p)) ≤ ε, ∃yi ∈ Ti (x, p) s.t.

Fi (x, y, ωi )+�i (x, ωi )+ εei (x) �⊆ −intCi (x), ∀ωi ∈ �i (x, p)},

where B(p∗, ε) means the closed ball centered at p∗ with radius ε.
Clearly, �1(ε) ⊆ �2(ε) for any ε > 0.
Next, we present the closedness of �1,�2 and the relationship between � j and

the solution set S of (SSVQEP) for j = 1, 2.

Lemma 4.1 Let
∧

be a finite dimensional space. For each i ∈ I , let Ci : H → 2Zi

be a set-valued mappings such that, for each x ∈ H,Ci (x) is a proper closed convex
and pointed cone in Zi with intCi (x) �= ∅, ei : H → Zi be a continuous vector
valued mapping with ei (x) ∈ intCi (x) for any x ∈ H, the set-valued mappings
Fi : H × K × Hi → 2Zi , �i : H × Hi → 2Zi be continuous, the set-valued
mapping Ti : H × ∧ → 2Ki be upper semicontinuous and compact-valued and
�i : H × ∧ → 2Hi be lower semicontinuous and closed. Assume further that the
mapping Wi (·) = Zi \ −intCi (·) is closed on H. Then the following statements hold:

(i) for each j ∈ {1, 2},� j (ε) is closed for all ε ≥ 0;
(ii) S = ⋂

ε>0� j (ε) for j = 1, 2.

Proof We first prove that �2(ε) is closed for all ε ≥ 0 and S = ⋂
ε>0�2(ε). We

divide the proof into two steps.

Step 1. Let us show that, for each ε ≥ 0,�2(ε) is closed. Let {xn} ⊂ �2(ε) and
xn → x̂ . Then there exists pn ∈ B(p∗, ε) such that, for each i ∈ I,

di
(
xn

i , �i
(
xn, pn)) ≤ ε (4.1)

and there exists yn
i ∈ Ti (xn, pn) such that

Fi
(
xn, yn, ωi

)+�i
(
xn, ωi

)+εei
(
xn) �⊆−intCi

(
xn)

, ∀ωi ∈ �i
(
xn, pn)

, n ∈ N .

Since, for each i ∈ I, the set-valued mappings Fi : H × K × Hi → 2Zi and
�i : H × Hi → 2Zi are continuous, there exist continuous selections fi and ψi of Fi

and �i , respectively, such that

fi
(
xn, yn, ωi

) + ψi
(
xn, ωi

) + εei
(
xn) �∈ −intCi

(
xn)

, ∀ωi ∈ �i
(
xn, pn)

.

(4.2)
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Note that Wi (·) = Zi \ −intCi (·) is closed on H . From this and (4.2), it follows that

fi
(
xn, yn, ωi

) + ψi
(
xn, ωi

) + εei
(
xn) ∈ Wi

(
xn)

, ∀ωi ∈ �i
(
xn, pn)

. (4.3)

Without loss of generality, suppose that pn → p̂ ∈ B(p∗, ε) since B(p∗, ε) is a closed
ball and

∧
is finite dimensional. Since �i : H × ∧ → 2Hi is lower semicontinuous

and closed, it follows from (4.1) that

di (x̂i , �i (x̂, p̂)) ≤ ε. (4.4)

Again, from the upper semicontinuity and compactness of Ti for each i ∈ I, there
exist a subsequence {ynk

i } of {yn
i } and ŷi ∈ Ti (x̂, p̂) such that ynk

i → ŷi . Since
Wi (·) = Zi \ −intCi (·) is closed on H and ei , Fi , �i are continuous, it follows from
(4.3) that

fi (x̂, ŷ, ωi )+ ψi (x̂, ωi )+ εei (x̂) ∈ Wi (x̂), ∀ωi ∈ �i (x̂, p̂),

that is,

fi (x̂, ŷ, ωi )+ ψi (x̂, ωi )+ εei (x̂) �∈ −intCi (x̂), ∀ωi ∈ �i (x̂, p̂),

which implies that

Fi (x̂, ŷ, ωi )+�i (x̂, ωi )+ εei (x̂) �⊆ −intCi (x̂), ∀ωi ∈ �i (x̂, p̂)

and hence x̂ ∈ �2(ε), which implies that �2(ε) is closed for all ε ≥ 0.

Step 2. We prove that S = ⋂
ε>0�2(ε). Clearly, S ⊆ ⋂

ε>0�2(ε). Indeed, for each
ε > 0, εei (x) ∈ intCi (x) for all x ∈ H. Suppose that there exists x̃ ∈ S
such that x̃ �∈ �2(ε). Then, for each i ∈ I, x̃i ∈ �i (x̃, p∗) and there exist
ỹi ∈ Ti (x̃, p∗) and ω̃i ∈ �i (x̃, p∗) such that

Fi (x̃, ỹ, ω̃i )+�i (x̃, ω̃i ) �⊆ −intCi (x̃) (4.5)

and

Fi (x̃, ỹ, ω̃i )+�i (x̃, ω̃i )+ εei (x̃) ⊆ −Ci (x̃).

Thus, from this, one has

Fi (x̃, ỹ, ω̃i )+�i (x̃, ω̃i ) ⊆ −Ci (x̃)− εei (x̃) ⊆ −intCi (x̃),

which contradicts (4.5).
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Conversely, let x̄ ∈ ⋂
ε>0�2(ε). Then x̄ ∈ �2(ε) for all ε > 0. Without loss

of generality, let a sequence of real numbers {εn} with εn > 0 and εn → 0. Thus
x̄ ∈ �2(εn) and there exists pn ∈ B(p∗, εn) such that, for each i ∈ I,

di
(
x̄i , �i

(
x̄, pn)) ≤ εn (4.6)

and there exists ȳn
i ∈ Ti (x̄, pn) such that

Fi
(
x̄, ȳn, ωi

)+�i (x̄, ωi )+εnei (x̄) �⊆−intCi (x̄), ∀ωi ∈ �i
(
x̄, pn)

.

Since, for each i ∈ I, the set-valued mappings Fi : H × K × Hi → 2Zi and
�i : H × Hi → 2Zi are continuous, there exist continuous selections fi and ψi of Fi

and �i , respectively, such that

fi
(
x̄, ȳn, ωi

) + ψi (x̄, ωi )+ εnei (x̄) ∈ Wi (x̄), ∀ωi ∈ �i
(
x̄, pn)

. (4.7)

Since the mappings ei , Fi , �i are continuous, the set-valued mapping Ti is upper
semicontinuous and compact-valued and �i : H ×∧ → 2Hi is lower semicontinuous
and closed, taking the limit in (4.6) and (4.7), we can conclude that

di
(
x̄i , �i

(
x̄, p∗)) = 0 (4.8)

and there exist a subsequence {ȳnk
i } of {ȳn

i } and ȳi ∈ Ti (x̄, p∗) such that ȳnk
i → ȳi

and fi (x̄, ȳ, ωi ) ∈ Fi (x̄, ȳ, ωi ). Hence we have

fi (x̄, ȳ, ωi )+ ψi (x̄, ωi ) ∈ Wi (x̄), ∀ωi ∈ �i (x̄, p∗),

which yields that

Fi (x̄, ȳ, ωi )+�i (x̄, ωi ) �⊆ −intCi (x̄), ∀ωi ∈ �i (x̄, p∗).

Therefore, x̄ ∈ S, that is,
⋂
ε>0�2(ε) ⊆ S.

Similarly, we know that �1(ε) is closed for all ε ≥ 0 and S = ⋂
ε>0�1(ε). This

completes the proof. ��
Remark 4.4 From Lemma 4.1, the solution set S of (SSVQEP) is closed.

In the sequel, we always assume that x∗ ∈ H is a fixed solution of (SSVQEP).
Define

θ j (ε) = sup d
(
x∗,� j (ε)

)
, ∀ε > 0, j = 1, 2.

It is easy to see that θ j (ε) is the radius of the smallest closed ball centered at x∗
containing � j (ε) for j = 1, 2.

Theorem 4.1 (SSVQEP) is the type II LP well-posed by perturbations if and only if
θ2(ε) → 0 as ε → 0.
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Proof Let (SSVQEP) be the type II LP well-posed by perturbations. We know that
S = {x∗}. Suppose that θ2(ε) �→ 0 as ε → 0. Then there exist σ > 0 and a sequence
{εn} of nonnegative real numbers with εn → 0 such that θ2(εn) > σ . That is, there
exists xn ∈ �2(εn) such that

d(x∗, xn) = ‖xn − x∗‖ ≥ σ. (4.9)

Again, from xn ∈ �2(εn), there exists pn ∈ B(p∗, εn) such that, for each i ∈ I ,

di
(
xn

i , �i
(
xn, pn)) ≤ εn

and there exists yn
i ∈ Ti (xn, pn) such that

Fi
(
xn, yn, ωi

)+�i
(
xn, ωi

)+εnei
(
xn) �⊆−intCi

(
xn)

, ∀ωi ∈�i
(
xn, pn)

, n ∈ N .

Therefore, {xn} is a type II LP approximating solution sequence corresponding to {pn}
for (SSVQEP) whenever pn → p∗ and so

‖xn − x∗‖ → 0,

which contradicts (4.9).
Conversely, let θ2(ε) → 0 as ε → 0. Clearly, S = {x∗}. If not, take x̂ ∈ S arbi-

trarily and let x̂ �= x∗. Then x̂ ∈ �2(ε) and so θ2(ε) ≥ ‖x̂ − x∗‖ > 0, which is a
contradiction. On the other hand, let {pn} ⊂ ∧

with pn → p∗. Let {xn} be a type II
LP approximating solution sequence corresponding to {pn} for (SSVQEP). Then there
exist a sequence {εn} of nonnegative real numbers with εn → 0 and yn

i ∈ Ti (xn, pn)

such that

di
(
xn

i , �i
(
xn, pn)) ≤ εn

and

Fi
(
xn, yn, ωi

)+�i
(
xn, ωi

)+εnei
(
xn) �⊆−intCi

(
xn)

, ∀ωi ∈ �i
(
xn, pn)

, n ∈ N .

Set σn = ‖pn − p∗‖ and ε̃n = max{σn, εn}. It follows that ε̃n → 0 and xn ∈ �2(ε̃n).
From the definition of θ2, we have

θ2(ε̃n) ≥ ‖xn − x∗‖

and so ‖xn − x∗‖ → 0. Therefore, (SSVQEP) is type II LP well-posed by perturba-
tions. This completes the proof. ��
Theorem 4.2 (SSVQEP) is the type I LP well-posed by perturbations if and only if
θ1(ε) → 0 as ε → 0.

Proof The proof is similar to the proof of Theorem 4.1 and so is omitted here. ��
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Theorem 4.3 (SSVQEP) is the generalized type I LP well-posed by perturbations if
and only if S is nonempty compact and H (�1(ε), S) → 0 as ε → 0.

Proof Let (SSVQEP) be the generalized type I LP well-posed by perturbations. By
Remark 4.2, S is nonempty and compact. Suppose that H (�1(ε), S) �→ 0 as ε → 0,
that is, e(�1(ε), S) �→ 0 as ε → 0. Indeed, e(S,�1(ε)) = 0 since S ⊆ �1(ε).
Moreover, we have

H (�1(ε), S) = max{e(�1(ε), S), e(S,�1(ε))} = e(�1(ε), S).

Therefore, there exist σ > 0, εn > 0 with εn → 0 and xn ∈ �1(εn) such that

d(xn, S) > σ. (4.10)

Since xn ∈ �1(εn), there exists pn ∈ B(p∗, εn) such that, for each i ∈ I, xn
i ∈

�i (xn, pn) and there exists yn
i ∈ Ti (xn, pn) satisfy

Fi
(
xn, yn, ωi

) +�i
(
xn, ωi

) + εnei
(
xn) �⊆ −intCi

(
xn)

, ∀ωi ∈ �i
(
xn, pn)

.

It follows that pn → p∗ and {xn} is a type I LP approximating solution sequence
corresponding to {pn} of (SSVQEP). By the generalized type I LP well-posed by per-
turbations of (SSVQEP), there exists a subsequence {xnk } of {xn} which converges
strongly to some point of S. In other word, d(xnk , S) → 0 as k → ∞, which contra-
dicts (4.10).

Conversely, assume that S is nonempty compact and H (�1(ε), S) → 0 as ε → 0.
Let {pn} ⊆ ∧

with pn → p∗ and {xn} be a type I LP approximating solution sequence
corresponding to {pn} of (SSVQEP). Then xn

i ∈ �i (xn, pn) and there exist a sequence
{εn} of nonnegative real numbers with εn → 0 and yn

i ∈ Ti (xn, pn) such that

Fi
(
xn, yn, ωi

)+�i
(
xn, ωi

)+εnei
(
xn) �⊆−intCi

(
xn)

, ∀ωi ∈�i
(
xn, pn)

, n ∈ N .

Consequently, {xn} ⊆ �1(εn). Take into account of H (�1(ε), S) → 0 as ε → 0, we
obtain

d(xn, S) ≤ e(�1(ε), S) = H (�1(ε), S) → 0.

Since S is nonempty, then there exists a sequence {x̄n} ⊆ S such that

d
(
xn, x̄n) → 0.

From the compactness of S, it follows that there exists a subsequence {x̄nk } of {x̄n}
which converges strongly to some point x̄ ∈ S. Then there exists an associated sub-
sequence {xnk } of {xn} such that xnk → x̄ . Therefore, (SSVQEP) is generalized type
I LP well-posed by perturbations. This completes the proof. ��
Theorem 4.4 [SSVQEP] is the generalized type II LP well-posed by perturbations if
and only if S is nonempty compact and H (�2(ε), S) → 0 as ε → 0.
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Proof The proof is similar to the proof of Theorem 4.3 and so is omitted here. ��
The following examples illustrate that the compactness of the solution set S in

Theorems 4.3 and 4.4 is necessary:

Example 4.1 Let I be a single set,
∧ = (−1, 1), X = Y = Z = R =

(−∞,+∞),C(x) = R+ = [0,+∞) for all x ∈ X, H = K = R+ = [0,+∞)

and T (x, p) = �(x, p) = [0, x], F(x, y, z) = y + z − x ,�(x, z) = 2(x − z) for all
x, y, z ∈ X and p ∈ ∧

. Clearly, the solution set S = H and so it is not compact.
Moreover, H (� j (ε), S) → 0 as ε → 0 since S ⊆ � j (ε) ⊆ H for any ε > 0.
Let {pn} ⊆ ∧

with pn → p∗ ∈ ∧
. However, the sequence {n} is a type I (resp.,

type II) LP approximating solution sequence corresponding to {pn} of (SSVQEP),
but the sequence {n} has no convergent subsequence. Therefore, (SSVQEP) is not the
generalized type I (resp., type II) LP well-posed by perturbations.

Example 4.2 Let I be a single set,
∧ = (−1, 1), X = Y = Z = R = (−∞,+∞),

C(x) = R+ = [0,+∞) for all x ∈ X, H = K = R+ = [0,+∞) and T (x, p) =
[0, x + p + 1], �(x, p) = [0, x], F(x, y, z) = [−(x + y − z), 0], �(x, z) = [x −
z, 2x − z] for all x, y, z ∈ X and p ∈ ∧

. Simple computation allows that the solution
set S = H and so it is not compact. Moreover, H (� j (ε), S) → 0 as ε → 0 since
S ⊆ � j (ε) ⊆ H for any ε > 0. Let {pn} ⊆ ∧

with pn → p∗ ∈ ∧
. However, the

sequence {n} is a type I (resp., type II) LP approximating solution sequence corre-
sponding to {pn} of (SSVQEP), but the sequence {n} has no convergent subsequence.
Therefore, (SSVQEP) is not the generalized type I (resp., type II) LP well-posed by
perturbations.

Now, we give the Furi-Vignoli type characterization Furi and Vignoli (1970) of the
generalized type I (type II) LP well-posedness by perturbations for (SSVQEP) by using
Kuratowski measure of noncompactness instead of the diameter. Since (SSVQEP) has
more than one solutions, the diameters of the approximating solution sets �1(ε) and
�2(ε) do not tend to zero, respectively.

Theorem 4.5 Assume that all the conditions of Lemma 4.1 are satisfied. Then we have
the following:

(1) (SSVQEP) is the generalized type I LP well-posed by perturbations if and only if

�1(ε) �= ∅, ∀ε > 0, lim
ε→0

M (�1(ε)) = 0.

(2) (SSVQEP) is the generalized type II LP well-posed by perturbations if and
only if

�2(ε) �= ∅, ∀ε > 0, lim
ε→0

M (�2(ε)) = 0.

Proof By Lemma 4.1, for each j ∈ {1, 2},� j (ε) is closed for all ε ≥ 0 and S =⋂
ε>0� j (ε).
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(1) Suppose that (SSVQEP) is the generalized type II LP well-posed by perturbations.
It follows from Theorem 4.3 that S is nonempty compact and H (�1(ε), S) → 0
as ε → 0. Since S ⊆ �1(ε) for all ε > 0, we have �1(ε) �= ∅ for all ε > 0. In
the light of Remark 2.1, one has

M (�1(ε)) ≤ 2H (�1(ε), S) = 2e(�1(ε), S).

Therefore, M (�1(ε)) → 0 as ε → 0, that is, limε→0 M (�1(ε)) = 0.
Conversely, let �1(ε) �= ∅ for all ε > 0 and limε→0 M (�1(ε)) = 0. From the

definition of �1, we get

�1(ε̃) ⊆ �1(ε̂), ∀ε̃, ε̂ ∈ R+ \ {0} (ε̃ ≤ ε̂),

that is,�1 is increasing on R+\{0}. Again, from S = ⋂
ε>0� j (ε) and the Kuratowski

theorem (see Kuratowski 1968), one has

H (�1(ε), S) → 0 (ε → 0)

and S is nonempty and compact. Thus, in view of Theorem 4.3, (SSVQEP) is the
generalized type II LP well-posed by perturbations.

(2) The proof is similar to that of (1) and so is omitted. This completes the proof.

��
It is well known that the well-posedness of a optimization problem is equivalent

to the existence and uniqueness of its solutions. In Hu et al. (2010b), also obtained
the relations among the well-posedness, the existence and uniqueness of solutions for
system of equilibrium problems.

Next, we establish analogous results for the type I LP well-posedness (resp., gen-
eralized type I LP well-posedness, type II LP well-posedness and generalized type II
LP well-posedness) by perturbations of (SSVQEP).

Theorem 4.6 Assume that all the conditions of Lemma 4.1 are satisfied and X is a
finite dimensional space. If �1(ε̃) and �2(ε̃) are nonempty bounded for ε̃ > 0. Then
we have the following:

(1) (SSVQEP) is the type I LP well-posed by perturbations if and only if it has a
unique solution.

(2) (SSVQEP) is the type II LP well-posed by perturbations if and only if it has a
unique solution.

Proof (1) It immediately follows from the definition of the type I LP well-posed by
perturbations of (SSVQEP) that (SSVQEP) has a unique solution.

Conversely, suppose that S = {x∗}. For any {pn} ⊆ ∧
with pn → p∗, let {xn} be

any type I LP approximating solution sequence corresponding to {pn} of (SSVQEP).
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Then, for each i ∈ I, xn
i ∈ �i (xn, pn) and there exist a sequence {εn} of positive real

numbers with εn → 0 and yn
i ∈ Ti (xn, pn) such that

Fi
(
xn, yn, ωi

)+�i
(
xn, ωi

)+εnei
(
xn) �⊆−intCi

(
xn)

, ∀ωi ∈�i
(
xn, pn)

, n ∈ N .

Let ε̃n = max{εn, ‖pn − p∗‖}. Then xn ∈ �1(ε̃n). Since�1(ε̃) is nonempty bounded
for ε̃ > 0, there exists ñ ∈ N such that {xn} ⊆ �1(ε̃n) ⊆ �1(ε̃) for all n ≥ ñ. So,
{xn} is bounded. Let {xnk } be any subsequence of {xn} with xnk → x̄ . By the similar
proof of Step 1 in Lemma 4.1, we obtain that x̄ ∈ S. Again, from S = {x∗}, we have
x̄ = x∗. Moreover, xn converges strongly to x∗. Therefore, (SSVQEP) is the type I
LP well-posed by perturbations.

(2) The proof of (2) is similar to that of (1) and so is omitted. This completes the
proof. ��

Example 4.3 Let I be a single set,
∧ = (−1, 1), X = Y = Z = R = (−∞,+∞),

C(x) = R+ = [0,+∞) for all x ∈ X, H = K = [−1, 0] and T (x, p) =
{−1}, �(x, p) = [x, 0], F(x, y, z) = −(x − y − z),�(x, z) = −z for all x, y, z ∈ X
and p ∈ ∧

. It is easy to verify that the solution set S = {−1}, there exists ε̃ = 1−|p|
3

such that �1(
1−|p|

3 ) = �2(
1−|p|

3 ) = [−1,− 2+|p|
3 ] is nonempty bounded and the

assumptions of Theorem 4.6 are satisfied. So, from Theorem 4.6, it follows that
(SSVQEP) is the type I (resp., type II) LP well-posed by perturbations.

Theorem 4.7 Assume that all the conditions of Theorem 4.6 are satisfied. If �1(ε̃)

(resp.,�2(ε̃)) is nonempty bounded for some ε̃ > 0, then (SSVQEP) is the generalized
type I (resp., generalized type II) LP well-posed by perturbations.

Proof We first prove that (SSVQEP) is the generalized type I LP well-posed by per-
turbations. For any {pn} ⊆ ∧

with pn → p∗, let {xn} be any type I LP approxi-
mating solution sequence corresponding to {pn} of (SSVQEP). Then, for each i ∈ I,
xn

i ∈ �i (xn, pn) and there exist a sequence {εn} of positive real numbers with εn → 0
and yn

i ∈ Ti (xn, pn) such that

Fi
(
xn, yn, ωi

)+�i
(
xn, ωi

)+εnei
(
xn) �⊆−intCi

(
xn)

, ∀ωi ∈�i
(
xn, pn)

, n ∈ N .

Put ιn = max{εn, ‖pn − p∗‖}. Then ιn → 0 and xn ∈ �1(ιn) for each n ∈ N .
Furthermore, we have xn ∈ �1(ε̃) for all sufficiently large n. From the boundness
of �1(ε̃), it follows that there exists a subsequence {xnk } of {xn} with xnk → x̄ . As
in the proof of Theorem 4.6, one can conclude that x̄ ∈ S and so S �= ∅. Therefore,
(SSVQEP) is the generalized type I LP well-posed by perturbations.

Similarly, we can derive that (SSVQEP) is the generalized type II LP well-posed
by perturbations. This completes the proof. ��
Remark 4.5 (1) Theorem 4.7 means that the generalized type I (resp., generalized

type II) LP well-posed by perturbations of (SSVQEP) is equivalent to the exis-
tence of its solutions under some suitable conditions.

(2) In Theorem 4.7, the boundness of � j (ε̃) for j = 1, 2 is necessary for some
ε̃ > 0.
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Example 4.4 Let I be a single set,
∧ = (−1, 1), X = Y = Z = R =

(−∞,+∞),C(x) = R+ = [0,+∞) for all x ∈ X, H = K = R+ = [0,+∞)

and T (x, p) = �(x, p) = [0, x], F(x, y, z) = −(x + y − z),�(x, z) = 2(x − z) for
all x, y, z ∈ X and p ∈ ∧

. It is easy to verify that the assumptions of Theorem 4.7 are
satisfied. However, � j (ε) for j = 1, 2 are unbounded for all ε > 0 since the solution
set S = H is unbounded. So, from Theorem 4.7, (SSVQEP) is not the generalized
type I (resp., type II) LP well-posed by perturbations.

5 Links with Levitin–Polyak well-posedness for minimization problems
with constraints

In this section, by virtue of the nonlinear scalarization function introduced by Chen
et al. (2005a), we present a parametric gap function g for (PSSVQEP) and the conti-
nuity of the parametric gap function and establish the equivalence between the type
I (resp., type II, generalized type I and generalized type II) Levitin–Polyak well-po-
sedness by perturbations of (SSVQEP) and the corresponding minimization problem
with functional constraints under quite mild assumptions.

Definition 5.1 A mapping g : H × � → R
⋃{+∞} is called the parametric gap

function for (PSSVQEP) if

(i) g(x, p) ≥ 0 for all (x, p) ∈ H ×�;
(ii) g(x∗, p∗) = 0 for some (x∗, p∗) ∈ H ×� if and only if x∗ ∈ S(p∗).

Remark 5.1 The definition of the parametric gap function for (PSSVQEP) is different
from that of Peng et al. (2012), which do not involve any other functions.

For each parametric p ∈ �, we define the following function g : H × � →
R

⋃{+∞} by

g(x, p) =: max
i∈I

min
yi ∈Ti (x,p)

max
ωi ∈�i (x,p)

min
fi ∈Fi (x,y,ωi ),ψi ∈�i (x,ωi )

−ξei (x, fi + ψi )

(5.1)

for all (x, p) ∈ H ×�.
In this section, we always suppose that I is an compact index set, for each i ∈ I, Fi :

H × K × Hi → 2Zi , �i : H ×� → 2Hi , Ti : H ×� → 2Ki and�i : H × Hi → 2Zi

are nonempty compact-valued mappings, where H = ∏
i∈I Hi and K = ∏

i∈I Ki .
Then the function g is well-defined.

It is well known that the gap functions are widely applied in optimization prob-
lems, equation problems, variational inequalities problems and others problems. The
minimization of the gap function is a effectively approach for solving variational
inequalities and equilibrium problems. Many authors have studied the gap functions
and applied to construct some novel algorithms for variational inequalities and equi-
librium problems (see, for example, Chen et al. 2000; Li et al. 2006 and the references
therein). From the computational point of view, the real-valued gap functions may be
more useful.
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Lemma 5.1 Let� be a metric space, I be an compact index set and, for each i ∈ I , Zi

be topological vector space, Hi and Ki be nonempty closed convex subsets of locally
convex Hausdorff topological vector spaces Xi and Yi , respectively. Let Ci : H → 2Zi

be a set-valued mappings such that, for each x ∈ H,Ci (x) is a proper closed convex
and pointed cone in Zi with intCi (x) �= ∅ and ei : H → Zi be a vector-valued
mapping with ei (x) ∈ intC(x) for all x ∈ H. Assume that, for each p ∈ � and
i ∈ I, xi ∈ �i (x, p) and there exists yi ∈ Ti (x, p) such that

Fi (x, y, xi )+�i (x, xi ) ⊆ −∂Ci (x). (5.2)

Then the function g(x, p) is a parametric gap function of (PSSVQEP) with respect to
the parametric p.

Proof Taking (x, p) ∈ H ×� arbitrarily. Suppose that g(x, p) < 0. From the defi-
nition of g, for each i ∈ I, there exists yi ∈ Ti (x, p) such that

min
fi ∈Fi (x,y,ωi ),ψi ∈�i (x,ωi )

−ξei (x, fi + ψi ) < 0, ∀ωi ∈ �i (x, p).

This implies that there exist f̄i ∈ Fi (x, y, xi ) and ψ̄i ∈ �i (x, xi ) such that

−ξei (x, f̄i + ψ̄i ) < 0.

By Lemma 2.1 (4), we have f̄i + ψ̄i �∈ −Ci (x), which contradicts (5.2). Therefore,
g(x, p) ≥ 0 for all (x, p) ∈ H ×�.

Secondly, we show that (x0, p0) ∈ H ×� satisfying g(x0, p0) = 0 if and only if
x0 ∈ S(p0).

In fact, suppose that g(x0, p0) = 0 for some (x0, p0) ∈ H × �. Since I is an
compact index set and, for each i ∈ I, Fi : H × K × Hi → 2Zi , �i : H × � →
2Hi , Ti : H × � → 2Ki and �i : H × Hi → 2Zi are nonempty compact-valued, it
follows that, for each i ∈ I , there exists y0i ∈ Ti (x0, p0) such that

min
fi ∈Fi (x0,y0,ωi ),ψi ∈�i (x0,ωi )

−ξei (x0, fi + ψi ) ≤ 0, ∀ωi ∈ �i (x0, p0).

Furthermore, for any ωi ∈ �i (x0, p0), there exist f̃i ∈ Fi (x0, y0, ωi ) and ψ̃i ∈
�i (x0, ωi ) such that −ξei (x0, f̃i + ψ̃i ) ≤ 0. Thus, from this and Lemma 2.1, it fol-
lows that

f̃i + ψ̃i �∈ −intCi (x0).

Therefore, for each i ∈ I, x0i ∈ �i (x0, p0) and there exists y0i ∈ Ti (x0, p0) such that

Fi (x0, y0, ωi )+�i (x0, ωi ) �⊆ −intCi (x0), ∀ωi ∈ �i (x0, p0),

that is, x0 ∈ S(p0).
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Conversely, assume that x0 ∈ S(p0) for some (x0, p0) ∈ H ×�. Then g(x0, p0) ≥
0. Let us show that g(x0, p0) = 0. Suppose that g(x0, p0) > 0. By the definition of
g, one can obtain

g(x0, p0)=:max
i∈I

min
y0i ∈Ti (x0,p0)

max
ωi ∈�i (x0,p0)

min
fi ∈Fi (x0,y0,ωi ),ψi∈�i (x0,ωi )

−ξei (x0, fi +ψi )>0,

that is, for some i ′ ∈ I, y0i ′ ∈ Ti ′(x0, p0) and there exists ω0i ′ ∈ �i ′(x0, p0) such that

ξei ′ (x0, fi ′ + ψi ′) < 0, ∀ fi ′ ∈ Fi ′(x0, y0, ω0i ′), ψi ′ ∈ �i ′(x0, ω0i ′).

Thus, from this and Lemma 2.1 (1), it follows that

fi ′ + ψi ′ ∈ −intCi ′(x0), ∀ fi ′ ∈ Fi ′(x0, y0, ω0i ′), ψi ′ ∈ �i ′(x0, ω0i ′).

Thus we have

Fi ′(x0, y0, ω0i ′)+�i ′(x0, ω0i ′) ⊆ −intCi ′(x0),

which contradicts x0 ∈ S(p0) and so g(x0, p0) = 0. Therefore, the function g(x, p)
is a parametric gap function of (PSSVQEP) with respect to the parametric p. This
completes the proof. ��

By the following example, we can show that the nonlinear scalarization function
is computable (see, Chen et al. 1999; Chen and Yang 2002; Li and Li 2009) and the
assumption of Lemma 5.1 is satisfied.

Example 5.1 Let I be a singleton,� = (0, 1), X = Y = K = R = (−∞,+∞), Z =
R3, H = R+ = [0,+∞),C(x) = R3+ and e(x) = (1, 1, 1) for all x ∈ X . For each
p ∈ � and x, ω ∈ H , let �(x, p) = [x, x + p], T (x, p) = [x − p, x], F(x, y, ω) =
{0} × {−ω + x} × [0, y + 1] and �(x, ω) = {(0,−2ω + x,−x − 1)}. Set S = {z =
(z1, z2, z3) ∈ R3 : hi (z) ≤ 0, hi ∈ Z∗ \ {0}, i = 1, 2, 3}, where hi (z) = −zi , i =
1, 2, 3 and Z∗ is the dual space of Z . Clearly, S = C(x) = R3+. It is easy to see that,
for each p ∈ �, x ∈ �(x, p) and y ∈ T (x, p) such that

F(x, y, x)+�(x, x) = {0} × {0} × [0, y + 1] + (0,−x,−x − 1)

= {0} × {−x} × [−x − 1, y − x].
So, there exists y = x such that

F(x, y, x)+�(x, x) = {(0,−x, ı) : ı ∈ [−x − 1, 0]} ⊆ −∂C(x) = −∂R3+.

Simple computation shows that, for each p ∈ �, the solution set S(p) = H = R+.
By Corollary 2.5 of Chen et al. (1999, p. 244), one has

ξe(x, F(x, y, ω)+�(x, ω))

= max{h1( f + ψ), h2( f + ψ), h3( f + ψ) : f ∈ F(x, y, ω), ψ ∈ �(x, ω)}
= max{0, 2x − 3ω, ı : ı ∈ [−x − 1, y − x]}.
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Therefore,

min
fi ∈Fi (x,y,ωi ),ψi ∈�i (x,ωi )

−ξei (x, fi + ψi ) = min{0, 3ω − 2x, ı : ı ∈ [x − y, x + 1]}.

Moreover, we have

g(x, p) = min
y∈T (x,p)

max
ω∈�(x,p)min{0, 3ω − 2x, ı : ı ∈ [x − y, x + 1]}.

It follows from the proof of Lemma 5.1 that g(x, p) is a parametric gap function of
(PSSVQEP) with respect to the parametric p.

Now we give an example to illustrate that the gap function defined by (5.1) is
applicable, but the gap function defined by Peng et al. (2012, p. 876, (20)) fails.

Example 5.2 Let X,Y, K , Z be the same as Example 5.1, H = [0, 1] and let C(x) =
R3+ and e(x) = (1, 1, 1) for all x ∈ X . For each x, ω ∈ H , let �(x) = [x, 1], T (x) =
[x − 1, x], F(x, y, ω) = (0,−ω + x, y) and �(x, ω) = (0,−2ω + x,−x). Set
S = {z = (z1, z2, z3) ∈ R3 : hi (z) ≤ 0, hi ∈ Z∗ \ {0}, i = 1, 2, 3}, where hi (z) =
−zi , i = 1, 2, 3 and Z∗ is the dual space of Z . Clearly, S = C(x) = R3+. For the fol-
lowing generalized vector equilibrium problem (GVEP) studied by Peng et al. (2012):
finding x ∈ H , such that x ∈ �(x) and there exists y ∈ T (x) satisfying

F(x, y, ω) �∈ −intC(x), ∀ω ∈ �(x).

It is easy to see that the set of solutions to (GVEP) is H . However, the function defined
by Peng et al. (2012, p. 876, (20)):

φ(x) = inf
y∈T (x)

max
ω∈�(x)−ξe(x, F(x, y, ω))

= inf
y∈T (x)

max
ω∈�(x)min{0, ω − x,−y}

< 0, ∀x ∈ H \ {0}.

That is, for any solution x ∈ H \ {0} of (GVEP), φ(x) < 0. So, the function φ fails to
be the gap function of (GVEP).

On the other hand, (GVEP) is equivalent to the following generalized vector quasi-
equilibrium problem (GVQEP):

F(x, y, ω)+�(x, ω) = (0, 2x − 3ω, y − x) �∈ −intC(x), ∀ω ∈ �(x).

In fact, let p = 1, for any x ∈ H, x ∈ �(x, p) = [x, p] = �(x) and there exists
y = x − p ∈ T (x, p) = [x − p, x] = T (x) such that

F(x, y, ω)+�(x, ω) = (0, 2x − 3ω,−p) �∈ −intC(x), ∀ω ∈ �(x, p).
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This implies that S(x, p) = H . Similar to Example 5.1, we can show that

ξe(x, F(x, y, ω)+�(x, ω)) = max{0, 2x − 3ω, y − x}

and

min
fi ∈Fi (x,y,ωi ),ψi ∈�i (x,ωi )

−ξei (x, fi + ψi ) = min{0, 3ω − 2x, x − y}.

Moreover, we have

g(x, p) = min
y∈T (x,p)

max
ω∈�(x,p)min{0, 3ω − 2x, x − y}, x ∈ H.

It follows from the proof of Lemma 5.1 that g(x, p) is a parametric gap function of
(PSSVQEP) with respect to the parametric p. Therefore,

g(x) = min
y∈T (x)

max
ω∈�(x)min{0, 3ω − 2x, x − y}, x ∈ H,

which can be viewed as a gap function of (GVEP) on H .

In the next, we investigate the continuity of the function g.

Lemma 5.2 For each i ∈ I , let Ci : H → 2Zi be a set-valued mappings such that, for
each x ∈ H,Ci (x) is a proper closed convex and pointed cone in Zi with intCi (x) �=
∅, ei : H → Zi be a continuous vector valued mapping with ei (x) ∈ intCi (x) for any
x ∈ H, the set-valued mappings Fi : H × K × Hi → 2Zi and�i : H × Hi → 2Zi be
continuous and compact-valued, the set-valued mapping Ti : H ×∧ → 2Ki be upper
semicontinuous and compact-valued and �i : H × ∧ → 2Hi be lower semicontin-
uous and compact-valued. Assume that the mapping �i (·) = Zi \ intCi (·) is upper
semicontinuous on H. Then the function g defined by (5.1) is lower semicontinuous
on H × ∧

.

Proof Since I is a compact index set, for each i ∈ I, the mappings Fi , �i , Ti and �i

are nonempty compact-valued and, from (5.1), one has

|g(x, p)| < +∞, ∀(x, p) ∈ H ×
∧
.

Now, we show that the function g is lower semicontinuous on H × ∧
. Taking ι ∈ R

arbitrarily. Assume that {(xn, pn)} ⊂ H × ∧
such that

(
xn, pn) → (x0, p0) , g

(
xn, pn) ≤ ι, ∀n ∈ N ,

that is, for each n ∈ N ,

max
i∈I

min
yn

i ∈Ti (xn ,pn)
max

ωn
i ∈�i (xn ,pn)

min
fi ∈Fi (xn ,yn ,ωn

i ),ψi ∈�i (xn ,ωn
i )

−ξei (x
n, fi + ψi ) ≤ ι.

(5.3)
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Since the mapping�i (·) = Zi \intCi (·) is upper semicontinuous on H , it follows from
Lemma 2.2 (3) that ξei (·, ·) is upper semicontinuous on H×Zi and so −ξei (·, ·) is lower
semicontinuous on H × Zi . Note that the set-valued mapping Ti : H × ∧ → 2Ki

is upper semicontinuous and compact-valued and �i : H × ∧ → 2Hi is lower
semicontinuous. From Remark 2.2, we can derive that, without loss of generality,
for any yn

i ∈ Ti (xn, pn) and ω0i ∈ �i (x0, p0), there exist y0i ∈ Ti (x0, p0) and
ωn

i ∈ �i (xn, pn) such that yn
i → y0i and ωn

i → ω0i . Since the set-valued mappings
Fi : H × K × Hi → 2Zi and�i : H × Hi → 2Zi are continuous and compact-valued,
we have

min
fi ∈Fi (x0,y0,ω0i ),ψi ∈�i (x0,ω0i )

−ξei (x0, fi + ψi )

≤ min
fi ∈Fi (xn ,yn ,ωn

i ),ψi ∈�i (xn ,ωn
i )

−ξei (x
n, fi + ψi ) ≤ ι, ∀n ∈ N .

This shows that

max
i∈I

min
y0i ∈Ti (x0,p0)

max
ω0i ∈�i (x0,p0)

min
fi ∈Fi (x0,y0,ω0i ),ψi ∈�i (x0,ω0i )

−ξei (x0, fi + ψi ) ≤ ι,

i.e., g(x0, p0) ≤ ι. Thus the level set {(x, p) ∈ X ×∧ : g(x, p) ≤ ι} is closed-valued
for all ι ∈ R. Therefore, g is lower semicontinuous on X × ∧

. This completes the
proof. ��

If the assumptions of Lemma 5.2 are enhanced, we can conclude that the function
defined by (5.1) is continuous on X × ∧

.

Lemma 5.3 If the assumptions of Lemma 5.2 are satisfied, for each i ∈ I, Ti : H ×∧ → 2Ki is lower semicontinuous, �i : H × ∧ → 2Hi is upper semicontinuous
and compact-valued and the mapping Ci (·) is upper semicontinuous on H, then the
function g defined by (5.1) is continuous on H × ∧

.

Proof By Lemma 5.2, we only need to prove that the function g defined by (5.1) is
upper semicontinuous on H ×∧

, that is, −g is lower semicontinuous on H ×∧
. The

proof is similar to that of Lemma 5.2 and so it is omitted. This completes the proof. ��
Example 5.3 Let us consider Example 5.1. By Example 5.1, for each p ∈ (0, 1), x ∈
H , we have

g(x, p) = min
y∈T (x,p)

max
ω∈�(x,p)min{0, 3ω − 2x, ı : ı ∈ [x − y, x + 1]}.

It is easy to see that g(x, p) = 0 for p ∈ (0, 1), x ∈ H , and so, the gap function g is
lower semicontinuous (continuous) on H × ∧

.

For any p∗ ∈ ∧
, we consider the type I (resp., type II, generalized type I and

generalized type II) LP well-posedness for a class of parametric optimization problem
with constraints [for short, (P)]:
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min g(x, p∗)
subject to xi ∈ �i (x, p∗), ∀x ∈ H,

yi ∈ Ti (x, p∗), ∀i ∈ I,

where I is an index set, for each i ∈ I, Zi is a topological vector space, Hi and Ki

are nonempty closed convex subsets of locally convex Hausdorff topological vector
spaces Xi and Yi , respectively, �i : H × � → 2Hi and Ti : H × � → 2Ki are two
set-valued mappings, where H = ∏

i∈I Hi and K = ∏
i∈I Ki .

We denote the optimal set and optimal value of (P) by S̃ and υ̃, respectively. In the
following, we always assume that υ̃ > −∞.

In the sequel, we recall some definitions on LP well-posedness for (P) which are
needed in our results.

Definition 5.2 Let
∧

be a metric space and {pn} ⊆ ∧
such that pn → p∗.

(1) A sequence {xn} ⊆ H is said to be the type I LP minimizing sequence corre-
sponding to {pn} for (P) if, for each i ∈ I, xn

i ∈ �i (xn, pn) and there exist a
sequence {εn} of nonnegative real numbers with εn → 0 and yn

i ∈ Ti (xn, pn)

such that

g
(
xn, pn) ≤ υ̃ + εn . (5.4)

(2) A sequence {xn} ⊆ H is said to be the type II LP minimizing sequence cor-
responding to {pn} for (P) if, for each i ∈ I, there exist a sequence {εn} of
nonnegative real numbers with εn → 0 and yn

i ∈ Ti (xn, pn) such that

di
(
xn

i , �i
(
xn, pn)) ≤ εn (5.5)

and (5.4) hold.

In the following, we give the definitions of the LP well-posed by perturbations for
(P) which are similar to Definition 4.2.

Definition 5.3 (1) (P) is called the type I (resp., type II) LP well-posed by perturba-
tions if it has a unique solution and, for any {pn} ⊂ ∧

with pn → p∗, each type
I (resp., type II) LP minimizing sequence corresponding to {pn} of (P) converges
strongly to the unique solution.

(2) (P) is called the generalized type I (resp., type II) LP well-posed by perturbations
if the solution set S̃ of (P) is nonempty and, for any {pn} ⊂ ∧

with pn → p∗,
each type I (resp., type II) LP minimizing sequence corresponding to {pn} of (P)
has a subsequence which converges strongly to some point of S̃.

Remark 5.2 Each type I LP well-posedness by perturbations for (P) is the type II
(resp., generalized type I and generalized type II) LP well-posedness by perturbations
for (P). Moreover, any generalized type I LP well-posedness by perturbations for (P)
is the generalized type II LP well-posedness by perturbations for (P).

We explore the relationships between the type I (resp., type II, generalized type I
and generalized type II) LP well-posedness of (P) and that of (SSVQEP).
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Theorem 5.1 Assume that the assumptions of Lemma 5.2 are satisfied. Then the fol-
lowing results hold:

(1) (SSVQEP) is the type I LP well-posedness by perturbations if and only if (P)
is the type I LP well-posedness by perturbations with the function g defined by
(5.1).

(2) (SSVQEP) is the type II LP well-posedness by perturbations if and only if (P)
is the type II LP well-posedness by perturbations with the function g defined by
(5.1).

(3) (SSVQEP) is the generalized type I LP well-posedness by perturbations if and
only if (P) is the generalized type I LP well-posedness by perturbations with the
function g defined by (5.1).

(4) (SSVQEP) is the generalized type II LP well-posedness by perturbations if and
only if (P) is the generalized type II LP well-posedness by perturbations with the
function g defined by (5.1).

Proof We only need to prove (1). The proofs of (2), (3) and (4) are similar to that of
(1), respectively, and so they are omitted. By Lemma 5.1, we know that x∗ ∈ S if and
only if x∗ ∈ S̃ corresponding to some parameters p∗ ∈ ∧

and υ̃ = g(x∗, p∗) = 0.
Suppose that (SSVQEP) is the type I LP well-posedness by perturbations. Let

{pn} ⊆ ∧
with pn → p∗ and {xn} ⊆ H be a type I LP approximating solution

sequence corresponding to {pn} for (SSVQEP). Then, for each i ∈ I, xn
i ∈ �i (xn, pn)

and there exist yn
i ∈ Ti (xn, pn) and a sequence {εn} of nonnegative numbers with

εn → 0 such that

Fi
(
xn, yn, ωi

)+�i (x
n, ωi )+εnei

(
xn) �⊆−intCi

(
xn)

, ∀ωi ∈ �i
(
xn, pn)

, n ∈ N .

This shows that there exist fi ∈ Fi (xn, yn, ωi ) and ψ ∈ �i (xn, ωi ) such that

fi + ψi �∈ −εnei
(
xn) − intCi

(
xn)

, ∀n ∈ N .

Thus, from Lemma 2.1 (iii), one has ξei (x
n, fi + ψi ) ≥ −εn for each n ∈ N , that is,

− ξei

(
xn, fi + ψi

) ≤ εn, ∀n ∈ N . (5.6)

Therefore, from (5.6), it follows that, for each n ∈ N ,

max
i∈I

min
yn

i ∈Ti (xn ,pn)
max

ωi ∈�i (xn ,pn)
min

fi ∈Fi (xn ,yn ,ωi ),ψi ∈�i (xn ,ωi )
−ξei (x

n, fi + ψi ) ≤ εn .

Thus, from this, we get g(xn, pn) ≤ εn for each n ∈ N . Therefore, the sequence {xn}
is a type I LP minimizing sequence corresponding to {pn} for (P). Since (SSVQEP)
is the type I LP well-posedness by perturbations, (P) is the type I LP well-posedness
by perturbations with the function g defined by (5.1).

Conversely, assume that (P) is the type I LP well-posedness by perturbations with
the function g defined by (5.1). Let {pn} ⊆ ∧

with pn → p∗ and {xn} ⊆ H
be a type I LP minimizing sequence corresponding to {pn} for (P). Then, for each
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i ∈ I, xn
i ∈ �i (xn, pn) and there exist yn

i ∈ Ti (xn, pn) and a sequence {εn} of
nonnegative numbers with εn → 0 such that

g
(
xn, pn) ≤ υ̃ + εn = εn, ∀n ∈ N .

By the definition of g, for each i ∈ I, ωi ∈ �i (xn, pn), there exist fi ∈ Fi (xn, yn, ωi )

and ψi ∈ �i (xn, ωi ) such that

−ξei

(
xn, fi + ψi

) ≤ εn, ∀n ∈ N .

From Lemma 2.1 (3), one has fi + ψi �∈ −εnei (xn) − intCi (xn) for each n ∈ N ,
that is,

Fi
(
xn, yn, ωi

) +�i
(
xn, ωi

) + εnei
(
xn) �⊆ −intCi

(
xn)

, ∀n ∈ N .

Therefore, the sequence {xn} is a type I LP approximating solution sequence corre-
sponding to {pn} for (SSVQEP). From the type I LP well-posedness by perturbations
with the function g defined by (5.1), it follows that (SSVQEP) is the type I LP well-
posedness by perturbations. This completes the proof. ��

6 Concluding remarks

In this paper, we firstly established the existence theorems of solutions for (PSSVQEP)
and its dual problem (DPSSVQEP) under some suitable conditions.

Secondly, we introduce the notions of the type I (resp., type II, generalized type I and
generalized type II) LP well-posedness by perturbations for (SSVQEP) in topological
vector spaces. Some metric characterizations of these LP well-posedness by pertur-
bations are derived. We also obtain the relationships among these LP well-posedness
by perturbations and the existence and uniqueness of solution to (SSVQEP).

Finally, by virtue of the nonlinear scalarization function introduced by Chen et al.
(2005a), a parametric gap function g for (PSSVQEP) is introduced, which is distinct
from that of Peng et al. (2012). The continuity of the parametric gap function g is
presented and then we establish the equivalence between these LP well-posedness by
perturbations of (SSVQEP) and the corresponding minimization problem with func-
tional constraints under quite mild assumptions. For further research, we may study
the following problems:

(1) One can study the LP well-posed by perturbations for the dual problem
of (SSVQEP), optimization problem with (SSVQEP) [resp., (PSSVQEP),
(DSSVQEP) and (DPSSVQEP)] constraints, equilibrium problem with
(SSVQEP) [resp., (PSSVQEP), (DSSVQEP) and (DPSSVQEP)] constraints.

(2) One also can study some metric characterizations and stability of approximating
solution sets for the mentioned above problems.
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