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In this article, we propose and investigate several iterative methods for
approximating fixed points of a firmly nonexpansive-type mapping and for
finding a common element of the set of fixed points of the firmly
nonexpansive-type mapping and the set of solutions of an equilibrium
problem in Banach space. By using the conception of generalized
projection, strong convergence theorems for firmly nonexpansive-type
mappings and equilibrium problems in Banach space are established under
suitable assumptions, which extend and modify some known results in the
literature.

Keywords: strong convergence theorem; firmly nonexpansive-type
mapping; equilibrium problem; fixed point; generalized projection operator

AMS Subject Classifications: 47H09; 47J05; 47J25

1. Introduction

Let E be a real Banach space with the dual space E �. The norm and the dual pair
between E and E � are denoted by k�k and h�, �i, respectively. Let C�E be a nonempty
closed convex set. A mapping S on a subset C of E is called a nonexpansive mapping
if kSx�Syk� kx� yk for all x, y2C. We denote by F(S) the set of fixed points of S,
that is, F(S)¼ {x2C:Sx¼ x}. Let M : E! 2E

�

be a maximal monotone operator
(see, e.g. [5,7,12,14,16]).

In [19], Reich proved a weak convergence theorem for finding a common
asymptotic fixed point of a finite family of strongly nonexpansive mappings in a
Banach space. Furthermore, he studied the proximal point algorithm for maximal
monotone operators in a Banach space. By applying the conception of generalized
projection, Kamimura et al. [12] introduced an iterative sequence for a maximal
monotone operator, and proved the strong and weak convergence of the iterative
sequence under different conditions. Moreover, they also explored the convex
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minimization problem and the variational inequality problem by the obtained

results. In 2008, Li and Song [16] introduced the following algorithm:

x0 2E chosen arbitrarily,

yn ¼ J�1ð�nJðxnÞ þ ð1� �nÞJðJrnxnÞÞ,

xnþ1 ¼ J�1ð�nJðx0Þ þ ð1� �nÞJð ynÞÞ, n2Zþ,

8><
>:

where Jr¼ (Jþ rM)�1J, {�n}, {�n}� (0, 1) and J is the duality mapping on E. They

derived a strong convergence theorem and a weak convergence theorem under

different conditions respectively, and gave an estimate of the convergence rate of the

algorithm.
In Hilbert spaces, Nakajo and Takahashi [17] considered the sequence {xn}

generated by

x0 ¼ x2C,

yn ¼ �nxn þ ð1� �nÞSxn,

Cn ¼ fz2C : hxn � z, x0 � xni � 0g,

Qn ¼ fz2C : k yn � zk � kxn � zkg,

xnþ1 ¼ PCn\Qn
x, n2Zþ,

8>>>>>>><
>>>>>>>:

where C is a nonempty closed convex subset of a Hilbert space, P is metric projection

operator, {�n}� [0, a] for some a2 [0, 1). They showed that {xn} converges strongly

to PF(S)x0 by the hybrid method, and obtained a strong convergence theorem for a

family of nonexpansive mappings in a Hilbert space.
Let f: C	C!R. Blum and Oettli [3] understood the equilibrium problem

by finding �x2C such that

f ð �x, yÞ � 0 8y2C: ð1:1Þ

Denote the set of solutions of (1.1) by EP( f ). The equilibrium problem provided a

very general formulation of variational problems such as:

(i) Minimization problem: find x2C such that g(x)� g(y) for all y2C, where

g: C!R is a functional. In this case, we define f(x, y)¼ g(y)� g(x) for all

x, y2C.
(ii) Variational inequality: find x2C such that hG(x), y� xi� 0 for all y2C,

where G: C!E � is a mapping. In this case, we define f(x, y)¼hG(x), y� xi

for all x, y2C.

Considerable problems in physics, structural analysis, optimization, management

science, economics and transportation equilibrium coincide to find a solution of

(1.1). Some methods have been proposed to solve the equilibrium problems

(see, e.g. [3,4,6,21]). Recently, Takahashi and Zembayashi [22] proved the strong

and weak convergence theorems for finding a common element of the set of solutions

of the equilibrium problem (1.1) and the set of fixed points of a relatively

nonexpansive mapping in a Banach space. Ceng et al. [4] introduced the following
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algorithm:

x0 2E chosen arbitrarily,

yn ¼ J�1ð�nJðx0Þ þ ð1� �nÞð�nJðxnÞ þ ð1� �nÞJðJrnxnÞÞÞ,

f ðTrnyn, yÞ þ
1

rn
hy� Trnyn,Trnyn � Jyni � 0 8y2C,

Wn ¼ fz2C : hxn � z, Jðx0Þ � JðxnÞi � 0g,

Hn ¼ fz2C : �ðz,TrnynÞ � �n�ðz, x0Þ þ ð1� �nÞ�ðz, xnÞg,

xnþ1 ¼ �Hn\Wn
x0, n2Zþ,

8>>>>>>>>>><
>>>>>>>>>>:

where Jrn ¼ ðJþ rnMÞ
�1J, f�ng, f�ng � ½0, 1
, and {rn}� (0,1). They proved a strong

convergence theorem and a weak convergence theorem for a common element of the
set of solutions of the equilibrium (1.1) and the set of zero points of a maximal
monotone operator M in a Banach space under suitable conditions.

Motivated and inspired by above works, the purpose of this article is to introduce
and investigate several iterative sequences convergence to a fixed point of a firmly
nonexpansive-type mapping (see, Section 2) and a common element of the set of
fixed points of the firmly nonexpansive-type mapping and the set of solutions of the
equilibrium problem (1.1), respectively. By using generalized projection, strong
convergence theorems for firmly nonexpansive-type mappings and equilibrium
problems in a Banach space are established under some suitable assumptions.

The remaining of this article is organized as follows. In Section 2, we introduce
preliminary results. In Section 3, we investigate the strong convergence theorems for
a firmly nonexpansive-type mapping. In Section 4, we explore the strong conver-
gence theorem for a common element of the set of fixed points of the firmly
nonexpansive mapping and the set of solutions of equilibrium problem (1.1). Finally,
we conclude this article in Section 5.

2. Preliminaries

Throughout this article, we denote by Zþ and R the set of nonnegative integers and
real numbers, respectively. Let C be a nonempty closed convex subset of a Banach
space E, and let T:E!C and F(T )¼ {z2C :Tz¼ z}. We denote by J the normalized
duality mapping from E to 2E

�

defined by

JðxÞ ¼ f j ðxÞ 2E � : h j ðxÞ,xi ¼ k j ðxÞkkxk ¼ k j ðxÞk2 ¼ kxk2g:

Without confusion, one understands that k j(x)k is the E �-norm and kxk is the
E-norm. Many properties of the normalized duality mapping J can be found
(see, e.g. [1,2,8,10,20,22]).

We list the follows properties:

(p1) J(x) is nonempty for each x2E.
(p2) J is a monotone and bounded operator in Banach space.
(p3) J is a strictly monotone operator in strictly convex Banach space.
(p4) J is the identity operator in Hilbert space.
(p5) If E is a reflexive, smooth and strictly convex Banach space and J�: E �! 2E is
the normalized duality mapping on E �, then J�1 ¼ J�, JJ� ¼ IE � and J�J¼ IE, where
IE and IE � are the identity mapping on E and E �, respectively.

Optimization 3485
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(p6) If E is a strictly convex Banach space, then J is one to one, i.e.

x 6¼ y) JðxÞ \ Jð yÞ ¼ ;:

(p7) If E is smooth, then J is single-valued.
(p8) E is a uniformly convex Banach space if and only if E � is uniformly smooth.
(p9) If E is a uniformly convex and uniformly smooth Banach space, then J is

uniformly norm-to-norm continuous on bounded sets of E and J�1¼ J� is also

uniformly norm-to-norm continuous on bounded sets of E �.

Let �:E	E!R be defined as follows:

�ðx, yÞ ¼ kxk2 � 2hx, Jð yÞi þ k yk2 8x, y2E:

Remark 2.1 [5,15,20] (i) If E is a reflexive, strictly convex and smooth Banach

space, then for all x, y2E, �(x, y)¼ 0 if and only if x¼ y; (ii) If E is a Hilbert space,

then �(x, y)¼kx� yk2 for all x, y2E.

Notation * stands for weak convergence and ! for strong convergence.

We first recall some definitions and lemmas which are needed in the main results

of this work.

ASSUMPTION 2.1 Let C be a nonempty closed convex subset of a uniformly convex and

uniformly smooth Banach space E, and let f:C	C!R satisfy the following conditions

(C1)–(C4):

(C1) f(x, x)¼ 0 for all x2C.
(C2) f is monotone, i.e. f(x, y)þ f(y, x)� 0, for all x, y2C.
(C3) f is upper hemicontinuous, i.e. for all x, y, z2C, such that

lim sup
t!0þ

f ðtzþ ð1� tÞx, yÞ � f ðx, yÞ:

(C4) For all x2C, f(x, �) is convex and lower semicontinuous.

Definition 2.1 [1,2] We say that �C: E! 2C is a generalized projection operator if

�CðxÞ ¼ fz2C : �ðz, xÞ � �ð y, xÞ 8y2Cg:

Remark 2.2 [9,15] If E is a strictly convex Banach space, then the generalized

operator �C(x) is nonempty and single valued.

Remark 2.3 If E is a Hilbert space, then the generalized projection operator is

equivalent to the following metric projection operator

PCðxÞ ¼ fz2C : kx� zk2 � k y� zk2 8y2Cg:

Definition 2.2 [18,20] Let C be a nonempty closed convex subset of a smooth,

strictly convex and reflexive Banach space E.

(1) T:C!C is called a firmly nonexpansive-type mapping if, for all x, y2C,

�ðTx,TyÞ þ �ðTy,TxÞ � �ðTx, yÞ þ �ðTy, xÞ � �ðTx, xÞ � �ðTy, yÞ,

4 J. Chen et al.486
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or equivalently,

hTx� Ty, JðTxÞ � JðTyÞi � hTx� Ty, JðxÞ � Jð yÞi:

(2) T:C!C is called closed, if for any sequence {xn}�C with xn! x and

Txn! y, then Tx¼ y.
(3) T:C!C is called a relatively quasi-nonexpansive mapping if, F(T ) 6¼ ; and

�( p,Tx)��( p, x) for all x2C and p2F(T ).

Remark 2.4 If E is a Hilbert space, then firmly nonexpansive-type mapping

reduces to nonexpansive mapping.

Example 2.1 [11] If C is a nonempty closed convex subset of a strictly convex,

smooth and reflexive Banach space E and PC is the metric projection of E onto C,

then T¼ I�PC is a firmly nonexpansive-type mapping.
From the Definition 2.2, the following proposition holds:

PROPOSITION 2.1 Let T: C!C be firmly nonexpansive-type mapping such that

F(T ) 6¼ ;. Then the following statements hold:

(1) �( p,Tx)þ�(Tx, x)��( p, x) 8p2F(T ), x2C;
(2) �( p,Tx)��( p, x) 8p2F(T ), x2C.

From Proposition 2.1, it is easy to see that a firmly nonexpansive-type mapping is

relatively quasi-nonexpansive mapping.

LEMMA 2.1 [13] Let E be a uniformly convex and smooth Banach space and let {xn}

and {yn} be two sequences of E. If �(xn, yn)! 0 and either {xn} or {yn} is bounded, then

xn� yn! 0.

LEMMA 2.2 [1,2,13] Let C be a nonempty closed convex subset of a smooth, strictly

convex and reflexive Banach space E, and let x2C and z2C. Then

z ¼ �Cx, hy� z, JðxÞ � JðzÞi � 0 8x2C:

LEMMA 2.3 [1,2,13] Let C be a nonempty closed convex subset of a smooth, strictly

convex and reflexive Banach space E. Then

�ðx,�CyÞ þ �ð�Cy, yÞ � �ðx, yÞ 8x, y2E:

LEMMA 2.4 [23] Let E be a uniformly convex Banach space and let r4 0. Then there

exists a strictly increasing, continuous and convex function g: [0, 2r]!R such that

g(0)¼ 0 and

ktxþ ð1� tÞ yk2 � tkxk2 þ ð1� tÞk yk2 � tð1� tÞ gðkx� ykÞ 8x, y2Br, t2 ½0, 1
,

where Br¼ {z2E:kzk� r}.

LEMMA 2.5 [3] Let C be a nonempty closed convex subset of a smooth, strictly convex

and reflexive Banach space E, f: C	C!R satisfy Assumption 2.1 and let r4 0 and

x2E. Then, there exists z2C such that

f ðz, yÞ þ
1

r
hy� z, JðzÞ � JðxÞi � 0 8y2C:

Optimization 5487
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LEMMA 2.6 [22] Let C be a nonempty closed convex subset of a uniformly smooth,
strictly convex and reflexive Banach space E, and let f: C	C!R satisfy Assumption
2.1. For r4 0 and x2E, define a mapping Tr: E!C by

TrðxÞ ¼

�
z2C : f ðz, yÞ þ

1

r
hy� z, JðzÞ � JðxÞi � 0 8y2C

�
8x2E:

Then, the following statements hold:

(i) Tr is single-valued.
(ii) Tr is a firmly nonexpansive-type mapping.
(iii) F(Tr)¼EP( f ), and EP( f ) is closed and convex.

LEMMA 2.7 [18] Let C be a nonempty closed convex subset of a smooth, strictly
convex and reflexive Banach space E, and let T: C!C be a relatively quasi-
nonexpansive mapping. Then F(T ) is closed and convex.

PROPOSITION 2.2 Let C be a nonempty closed convex subset of a smooth, strictly
convex and reflexive Banach space E, and let T: C!C be a firmly nonexpansive-type
mapping. Then F(T ) is closed and convex.

Proof It directly follows from Lemma 2.7 and Proposition 2.1. This completes the
proof. g

3. Strong convergence theorems for firmly nonexpansive-type mapping

In this section, we shall investigate two iterative sequences’ strong convergence to the
fixed point of firmly nonexpansive-type mapping in a Banach space under some
suitable conditions.

THEOREM 3.1 Let C be a nonempty closed convex subset of a uniformly convex and
uniformly smooth Banach space E,T: C!C be a closed and firmly nonexpansive-type
mapping. Let {xn} be a sequence defined as follows:

x0 2C chosen arbitrarily,

zn ¼ J�1ð�nJðxnÞ þ ð1� �nÞJðTxnÞÞ,

yn ¼ J�1ð�nJðx0Þ þ ð1� �nÞJðTznÞÞ,

Cn ¼ fz2C : hz� xn, Jðx0Þ � JðxnÞi � 0g,

Qn ¼ fz2C : �ðz, ynÞ � �n�ðz, x0Þ þ ð1� �nÞ�ðz, znÞg,

xnþ1 ¼ �Cn\Qn
x0 n2Zþ,

8>>>>>>>><
>>>>>>>>:

where {�n}, {�n}� [0, 1] satisfy limn!1�n¼ 0 and limn!1�n¼ 1. Then {xn} converges
strongly to �F(T )x0.

Proof By Proposition 2.2, one has that F(T ) is closed and convex. Hence �F(T ) is
well-defined. We now show that Cn and Qn are nonempty closed and convex. It is
easy to check that Cn is closed and convex and Qn is closed. Since, for any z2Qn,

�ðz, ynÞ � �n�ðz, x0Þ þ ð1� �nÞ�ðz, znÞ,

, �n�ðz, x0Þ þ ð1� �nÞ�ðz, znÞ � �ðz, ynÞ � 0,

, �2hz,�nJðx0Þ þ ð1� �nÞJðznÞ � Jð ynÞi

þ �nkx0k
2 þ ð1� �nÞkznk

2 � k ynk
2 � 0:

6 J. Chen et al.488

D
ow

nl
oa

de
d 

by
 [

W
uh

an
 U

ni
ve

rs
ity

] 
at

 1
6:

14
 3

0 
M

ay
 2

01
3 



Let us take arbitrary v1, v22Qn. Putting v¼ tv1þ (1� t)v2 8t2 [0, 1]. Then, for

each i2 {1, 2},

�2hvi,�nJðx0Þ þ ð1� �nÞJðznÞ � Jð ynÞi þ �nkx0k
2 þ ð1� �nÞkznk

2 � k ynk
2 � 0:

Therefore, one has

� 2hv,�nJðx0Þ þ ð1� �nÞJðznÞ � Jð ynÞi þ �nkx0k
2 þ ð1� �nÞkznk

2 � k ynk
2

¼ �2thv1,�nJðx0Þ þ ð1� �nÞJðznÞ � Jð ynÞi þ tð�nkx0k
2 þ ð1� �nÞkznk

2

� k ynk
2Þ � 2ð1� tÞhv2,�nJðx0Þ þ ð1� �nÞJðznÞ � Jð ynÞi

þ ð1� tÞð�nkx0k
2 þ ð1� �nÞkznk

2 � k ynk
2Þ � 0,

that is, v2Qn. Thus Qn is convex. Next, let !2F(T ). Since

�ð!, ynÞ ¼ k!k
2 � 2h!, Jð ynÞi þ k ynk

2

¼ k!k2 � 2h!,�nJðx0Þ þ ð1� �nÞJðTznÞi

þ k�nJðx0Þ þ ð1� �nÞJðTznÞk
2

� �n�ð!, x0Þ þ ð1� �nÞ�ð!,TznÞ

� �n�ð!, x0Þ þ ð1� �nÞ�ð!, znÞ,

i.e., !2Qn. Thus F(T )�Qn for all n2Zþ.

We next show by induction that F(T )�Cn for all n2Zþ. In view of C0¼C, we

get F(T )�C0. Assume that F(T )�Ck for some k2Zþ. Since xkþ1 ¼ �Ck\Qk
x0, and

from Lemma 2.2, one can conclude

hz� xkþ1, Jðx0Þ � Jðxkþ1Þi � 0 8z2FðT Þ � Ck:

This yields !2Ckþ1. Therefore F(T )�Cn 8n2Zþ. Moreover, F(T )�Cn\Qn for all

n2Zþ and Cn\Qn is nonempty closed and convex, which implies that {xn} is well-

defined. By Lemmas 2.2 and 2.3, one has xn ¼ �Cn
x0 and so

�ðxn, x0Þ � �ð!,x0Þ � �ð!, xnÞ � �ð!,x0Þ:

Thus {�(xn, x0)} is bounded, and {xn} is also bounded. Since �(!,Txn)��(!, xn),
{Txn} is bounded. From xnþ1 ¼ �Cn\Qn

x0 2Cn \Qn, we conclude

�ðxn,x0Þ � �ðxnþ1, x0Þ:

Then {�(xn,x0)} is nondecreasing. Thus the limit of �(xn, x0) exists. It follows from
Lemma 2.3 that, for all m2Zþn {0},

�ðxnþm, xnÞ ¼ �ðxnþm,�Cn
x0Þ � �ðxnþm, x0Þ � �ðxn, x0Þ,

which shows that limn!1�(xnþm,xn)¼ 0. Particularly, limn!1�(xnþ1,xn)¼ 0. By

Lemma 2.1, we have

lim
n!1
kxnþm � xnk ¼ lim

n!1
kxnþ1 � xnk ¼ 0:

Optimization 7489
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Therefore, {xn} is a Cauchy sequence in C. Let limn!1 xn ¼ �x. This together with

xnþ1 ¼ �Cn\Qn
x0 2Qn yields

�ðxnþ1, ynÞ � �n�ðxnþ1, x0Þ þ ð1� �nÞ�ðxnþ1, znÞ:

Observe that

�ðxnþ1, znÞ ¼ kxnþ1k
2 � 2hxnþ1, JðznÞi þ kznk

2

¼ kxnþ1k
2 � 2hxnþ1,�nJðxnÞ þ ð1� �nÞJðTxnÞi

þ k�nJðxnÞ þ ð1� �nÞJðTxnÞk
2

� �n�ðxnþ1,xnÞ þ ð1� �nÞ�ðxnþ1,TxnÞ:

Then

lim
n!1

�ðxnþ1, znÞ � lim
n!1

�n�ðxnþ1, xnÞ þ ð1� �nÞ�ðxnþ1,TxnÞ ¼ 0,

that is, limn!1�(xnþ1,zn)¼ 0. Consequently, one has

lim
n!1

�ðxnþ1, ynÞ � lim
n!1

�n�ðxnþ1, x0Þ þ ð1� �nÞ�ðxnþ1, znÞ ¼ 0,

that is, limn!1�(xnþ1, yn)¼ 0. By using Lemma 2.1, one has

lim
n!1
kxnþ1 � ynk ¼ lim

n!1
kxnþ1 � znk ¼ 0:

Since kxn� znk�kxn� xnþ1kþ kxnþ1� znk, one gets

lim
n!1
kxn � znk ¼ 0:

Since J is uniformly norm-to-norm continuous on bounded subset of E,

lim
n!1
kJðxnÞ � JðznÞk ¼ lim

n!1
kJðxnþ1Þ � Jð ynÞk

¼ lim
n!1
kJðxnþ1Þ � JðznÞk

¼ lim
n!1
kJðxnþ1Þ � JðxnÞk ¼ 0:

Due to

kJðxnþ1Þ � Jð ynÞk ¼ kJðxnþ1Þ � �nJðxnÞ � ð1� �nÞJðTznÞk

� ð1� �nÞkJðxnþ1Þ � JðTznÞk � �nkJðxnþ1Þ � JðxnÞk,

one concludes

kJðxnþ1Þ � JðTznÞk �
1

1� �n
ðkJðxnþ1Þ � Jð ynÞk þ �nkJðxnþ1Þ � JðxnÞkÞ:

Hence, from limn!1�n¼ 0,

lim
n!1
kJðxnþ1Þ � JðTznÞk ¼ 0:

Since J�¼ J�1 is uniformly norm-to-norm continuous on bounded subsets of E �,

we have

lim
n!1
kxnþ1 � Tznk ¼ 0:

8 J. Chen et al.490

D
ow

nl
oa

de
d 

by
 [

W
uh

an
 U

ni
ve

rs
ity

] 
at

 1
6:

14
 3

0 
M

ay
 2

01
3 



By the monotonicity of J and from Definition 2.3, one has

0 � hTzn � Txn, JðTznÞ � JðTxnÞi � hTzn � Txn, JðznÞ � JðxnÞi

and so,

kTzn � TxnkðkJðznÞ � JðxnÞk � kJðTznÞ � JðTxnÞkÞ � 0:

Therefore

kJðznÞ � JðxnÞk � kJðTznÞ � JðTxnÞk:

From this it immediately follows that limn!1kJ(Tzn)� J (Txn)k¼ 0. Since J�¼ J�1

is uniformly norm-to-norm continuous on bounded subsets of E �, we obtain

lim
n!1
kTzn � Txnk ¼ 0:

Note that

kxn � Txnk � kxn � xnþ1k þ kxnþ1 � Tznk þ kTzn � Txnk:

This yields that limn!1kxn�Txnk¼ 0. Since T is closed, this together with
limn!1 xn ¼ �x implies that T �x ¼ �x: Then �x2FðT Þ.

Let �! ¼ �FðT Þx0. From both �!2FðT Þ � Cn and xn ¼ �Cn
x0, it follows that

�ðxn, x0Þ � �ð �!, x0Þ: By the weakly lower semicontinuity of the norm,

�ð �x, x0Þ � lim inf
n!1

�ðxn, x0Þ � lim sup
n!1

�ðxn, x0Þ � �ð �!, x0Þ:

Taking into account the uniqueness of �F(T )x0, we get �x ¼ �!. Therefore {xn}
converges strongly to �F(T ) x0. This completes the proof. g

If �n� 1 for all n2Zþ in Theorem 3.1, the following result holds:

COROLLARY 3.1 Let C be a nonempty closed convex subset of a uniformly convex and
uniformly smooth Banach space E,T: C!C be a closed and firmly nonexpansive-type
mapping. Let {xn} be a sequence defined as follows:

x0 2E chosen arbitrarily,

yn ¼ J�1ð�nJðx0Þ þ ð1� �nÞJðTxnÞÞ,

Cn ¼ fz2C : hz� xn, Jðx0Þ � JðxnÞi � 0g,

Qn ¼ fz2C : �ðz, ynÞ � �n�ðz, x0Þ þ ð1� �nÞ�ðz, xnÞg,

xnþ1 ¼ �Cn\Qn
x0, n2Zþ,

8>>>>>><
>>>>>>:

where {�n}� [0, 1] satisfies limn!1�n¼ 0. Then {xn} converges strongly to �F(T )x0.

4. Strong convergence theorem for firmly nonexpansive-type mapping and

equilibrium problem

In this section, we shall explore an iterative sequence’s strong convergence to a
common element of the set of fixed point of firmly nonexpansive-type mapping and
the set of solutions for an equilibrium problem (1.1) in a Banach space under some
suitable conditions.

Optimization 9491
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THEOREM 4.1 Let C be a nonempty closed convex subset of a uniformly convex and
uniformly smooth Banach space E. Let f: C	C!R satisfy Assumption 2.1 and let
T: C!C be a closed and firmly nonexpansive-type mapping such that
EP( f )\F(T ) 6¼ ;. Let {xn} be a sequence defined as follows:

x0 2C chosen arbitrarily,

zn ¼ J�1ð�nJðxnÞ þ ð1� �nÞJðTxnÞÞ,

yn ¼ J�1ð�nJðx0Þ þ ð1� �nÞJðznÞÞ,

un 2Trnyn ¼ fz2C : f ðz, yÞ þ 1
rn
hy� z, JðzÞ � Jð ynÞi � 0 8y2Cg,

Cn ¼ fz2C : hz� xn, Jðx0Þ � JðxnÞi � 0g,

Qn ¼ fz2C : �ðz, unÞ � �n�ðz, x0Þ þ ð1� �nÞ�ðz, xnÞg,

xnþ1 ¼ �Cn\Qn
x0, n2Zþ,

8>>>>>>>>>>><
>>>>>>>>>>>:

where {�n}, {�n}� [0, 1] satisfy limn!1�n¼ 0, lim infn!1�n(1� �n)� a for some
a4 0 and {rn}� (0,1) satisfies lim infn!1 rn4 0 . Then {xn} converges strongly to
�F(T )\EP( f )x0.

Proof By Lemma 2.6 and Proposition 2.2, we see that F(T )\EP( f ) is closed and
convex. Hence �F(T )\EP( f ) is well-defined. We now show that Cn and Qn are
nonempty closed and convex. Clearly, Cn is closed and convex and Qn is closed.
As in the proof of Theorem 3.1, we have Qn is convex. Therefore, Cn\Qn is
closed and convex. Next, let us show that F(T )\EP( f )�Cn\Qn 8n2Zþ.
Let !2F(T )\EP( f ). Since

�ð!, znÞ ¼ �ð!, J
�1ð�nJðxnÞ þ ð1� �nÞJðTxnÞÞÞ

� �n�ð!, xnÞ þ ð1� �nÞ�ð!,TxnÞ � �ð!, xnÞ,

and

�ð!, ynÞ ¼ �ð!, J
�1ð�nJðx0Þ þ ð1� �nÞJðznÞÞÞ

� �n�ð!, x0Þ þ ð1� �nÞ�ð!, znÞ

� �n�ð!, x0Þ þ ð1� �nÞ�ð!, xnÞ,

and so, by Lemma 2.7 and Proposition 2.1,

�ð!, unÞ ¼ �ð!,TrnynÞ � �ð!, ynÞ � �n�ð!, x0Þ þ ð1� �nÞ�ð!, xnÞ:

Thus !2Qn 8n2Zþ. We show by induction that F(T )\EP( f )�Cn 8n2Zþ. From
C0¼C, we get F(T )\EP( f )�C0. Suppose that F(T )\EP( f )�Ck for some k2Zþ.
From xkþ1 ¼ �Ck\Qk

x0 and Lemma 2.2, it follows that

h!� xkþ1, Jðx0Þ � Jðxkþ1Þi � 0 8!2FðT Þ \ EPð f Þ � Ck,

which implies that F(T )\EP( f )�Ckþ1. As a consequence,

FðT Þ \ EPð f Þ � Cn 8n2Zþ:

Therefore, Cn\Qn is nonempty closed and convex. This means that {xn} is well-
defined, and so

FðT Þ \ EPð f Þ � Cn \Qn 8n2Zþ:

10 J. Chen et al.492
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By the definition of Cn, xn ¼ �Cn
x0. From Lemma 2.3, it follows that

�ðxn, x0Þ � �ð!,x0Þ � �ð!, xnÞ � �ð!,x0Þ:

Hence {�(xn, x0)} is bounded, and {Txn}, {xn}, {zn}, {yn} and {un} are also bounded.
Let r ¼ supn2Zþfkxnk, kTxnkg: By Lemma 2.4, there is a continuous, strictly
increasing and convex function g: [0, 2r]!R such that g(0)¼ 0 and

k�nJðxnÞ þ ð1� �nÞJðTxnÞk
2

� �nkJðxnÞk
2 þ ð1� �nÞkJðTxnÞk

2 � �nð1� �nÞ gðkJðxnÞ � JðTxnÞkÞ

¼ �nkxnk
2 þ ð1� �nÞkTxnk

2 � �nð1� �nÞ gðkJðxnÞ � JðTxnÞkÞ:

Since xnþ1 ¼ �Cn\Qn
x0 2Cn \Qn, we have

�ðxnþ1, unÞ � �n�ðxnþ1, x0Þ þ ð1� �nÞ�ðxnþ1, xnÞ, ð4:1Þ

and �(xn, x0)��(xnþ1, x0) 8n2Zþ. Thus, {�(xn, x0)} is nondecreasing. Again from
the boundness of �(xn,x0), it follows that limn!1�(xn, x0) exists. Similar to the
proof of Theorem 3.1, we have limn!1�(xnþm, xn)¼ 0, and {xn} is a Cauchy
sequence in C. Let limn!1 xn ¼ �x. Then, by limn!1�n¼ 0 and (4.1), we obtain

0 � lim
n!1

�ðxnþ1, unÞ � lim
n!1

�n�ðxnþ1, x0Þ þ lim
n!1
ð1� �nÞ�ðxnþ1,xnÞ ¼ 0,

i.e., limn!1�(xnþ1, un)¼ 0. From Lemma 2.1, it follows that

lim
n!1
kxnþ1 � xnk ¼ lim

n!1
kxnþ1 � unk ¼ 0:

Therefore, from kxn� unk� kxnþ1� xnkþkxn� unk, one has

lim
n!1
kxn � unk ¼ 0:

By the uniformly norm-to-norm continuity of J on bounded subset of E,

lim
n!1
kJðxnÞ � JðunÞk ¼ 0:

Since

�ð!, znÞ ¼ k!k
2 � 2h!, JðznÞi þ kznk

2

¼ k!k2 � 2h!,�nJðxnÞ þ ð1� �nÞJðTxnÞi þ k�nJðxnÞ þ ð1� �nÞJðTxnÞk
2

� k!k2 � 2�nh!, JðxnÞi � 2ð1� �nÞh!, JðTxnÞi þ �nkJðxnÞk
2

þ ð1� �nÞkTxnk
2 � �nð1� �nÞ gðkJðxnÞ � JðTxnÞkÞ

� �ð!, xnÞ � �nð1� �nÞ gðkJðxnÞ � JðTxnÞkÞ,

we obtain

�ð!, ynÞ � �n�ð!, x0Þ þ ð1� �nÞ�ð!, znÞ

� �n�ð!, x0Þ þ �ð!, xnÞ � �nð1� �nÞ gðkJðxnÞ � JðTxnÞkÞ:

Then, by Lemma 2.6 and Proposition 2.1, we have

�ð!, unÞ ¼ �ð!,TrnynÞ � �ð!, ynÞ

� �n�ð!,x0Þ þ �ð!, xnÞ � �nð1� �nÞ gðkJðxnÞ � JðTxnÞkÞ

Optimization 11493
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and so, �(!, yn)��n�(!, x0)þ (1� �n)�(!, xn). From lim infn!1�n(1� �n)� a,

it yields that

agðkJðxnÞ � JðTxnÞkÞ � �nð1� �nÞ gðkJðxnÞ � JðTxnÞkÞ

� �n�ð!, x0Þ þ �ð!, xnÞ � �ð!, unÞ

¼ �n�ð!, x0Þ þ kxnk
2 � kunk

2 � 2h!, JðxnÞ � JðunÞi

� �n�ð!, x0Þ þ kxn � unkðkxnk þ kunkÞ þ 2k!kkJðxnÞ � JðunÞk:

Therefore

lim
n!1

gðkJðxnÞ � JðTxnÞkÞ ¼ 0,

and consequently,

lim
n!1
kJðxnÞ � JðTxnÞk ¼ 0:

Since J�¼J�1 is uniformly norm-to-norm continuous on bounded subsets of E �,

one has

0 ¼ lim
n!1
kJðxnÞ � JðTxnÞk ¼ lim

n!1
kxn � Txnk:

Since T is closed, this together with limn!1 xn ¼ �x implies that T �x ¼ �x: Then
�x2FðT Þ. Let us now show �x2EPð f Þ. By Proposition 2.1 and Lemma 2.6, we obtain

�ðun, ynÞ ¼ �ðTrnyn, ynÞ

� �ð!, ynÞ � �ð!,TrnynÞ

� �n�ð!,x0Þ þ ð1� �nÞ�ð!, xnÞ � �ð!, unÞ

¼ �nð�ð!, x0Þ � �ð!, xnÞÞ þ �ð!,xnÞ � �ð!, unÞ:

Moreover, we can derive that

lim
n!1

�ðun, ynÞ � lim
n!1
½�nð�ð!, x0Þ � �ð!, xnÞÞ þ �ð!, xnÞ � �ð!, unÞ


¼ lim
n!1

�ð!, xnÞ � �ð!, unÞ

� lim
n!1
½kxn � unkðkxnk þ kunkÞ þ 2k!kkJðxnÞ � JðunÞk
 ¼ 0,

i.e. limn!1�(un, yn)¼ 0. It follows that limn!1kun� ynk¼ 0 and

limn!1kJ(un)� J(yn)k¼ 0. From both xn! �x and limn!1kxn� unk¼ 0, it follows

that un! �x and yn! �x. In view of lim infn!1 rn4 0, one has

lim
n!1

kJðunÞ � Jð ynÞk

rn
¼ 0:

Taking into account the monotonicity of f and

f ðun, yÞ þ
1

rn
hy� un, JðunÞ � Jð ynÞi � 0 8y2C,

one has

1

rn
hy� un, JðunÞ � Jð ynÞi � �f ðun, yÞ � f ð y, unÞ 8y2C:

12 J. Chen et al.494
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Since f satisfies Assumption 2.1,

f ð y, �xÞ � lim
n!1

f ð y, unÞ

�
1

rn
hy� un, JðunÞ � Jð ynÞi

� lim
k!1
k y� unk �

kJðunÞ � Jð ynÞk

rn
¼ 0,

i.e. f ð y, �xÞ � 0 for all y2C. Picking y2C arbitrarily. Since �x2C, tyþ ð1� tÞ �x2C

for all t2 (0, 1]. Therefore f ðtyþ ð1� tÞ �x, �xÞ � 0, and

0 ¼ f ðtyþ ð1� tÞ �x, tyþ ð1� tÞ �xÞ

� tf ðtyþ ð1� tÞ �x, yÞ þ ð1� tÞ f ðtyþ ð1� tÞ �x, �xÞ

� tf ðtyþ ð1� tÞ �x, yÞ:

Moreover, one has

f ðtyþ ð1� tÞ �x, yÞ � 0:

Thus, from Assumption 2.1,

0 � lim sup
t!0þ

f ðtyþ ð1� tÞ �x, yÞ � f ð �x, yÞ,

i.e. f ð �x, yÞ � 0 for all y2C. This means �x2EPð f Þ, and so, �x2FðT Þ \ EPð f Þ:
Let �! ¼ �FðT Þ\EPð f Þx0. From both �!2FðT Þ \ EPð f Þ � Cn and xn ¼ �Cn

x0, it

follows that �ðxn, x0Þ � �ð �!, x0Þ: By the weakly lower semicontinuity of the norm,

�ð �x, x0Þ � lim inf
n!1

�ðxn, x0Þ � lim sup
n!1

�ðxn, x0Þ � �ð �!, x0Þ:

By the uniqueness of �F(T )\EP( f ) x0, one concludes �x ¼ �!. Therefore {xn} converges
strongly to �F(T )\EP( f ) x0. This completes the proof. g

If �n� 0 in Theorem 4.1, we can get the similar result to Theorem 3.1 of [22]:

THEOREM 4.2 Let C be a nonempty closed convex subset of a uniformly convex and

uniformly smooth Banach space E. Let f: C	C!R satisfy Assumption 2.1 and let

T: C!C be a closed and firmly nonexpansive-type mapping such that

EP( f )\F(T ) 6¼ ;. Let {xn} be a sequence defined as follows:

x0 2C chosen arbitrarily,

yn ¼ J�1ð�nJðxnÞ þ ð1� �nÞJðTxnÞÞ,

un 2Trnyn ¼

�
z2C : f ðz, yÞ þ

1

rn
hy� z, JðzÞ � Jð ynÞi � 0 8y2C

�
,

Cn ¼ fz2C : hz� xn, Jðx0Þ � JðxnÞi � 0g,

Qn ¼ fz2C : �ðz, unÞ � �ðz, xnÞg,

xnþ1 ¼ �Cn\Qn
x0, n2Zþ,

8>>>>>>>>>><
>>>>>>>>>>:

where {�n}� [0, 1] satisfies lim infn!1�n(1��n)� a for some a4 0 and {rn}� (0,1)

satisfies lim infn!1 rn4 0 . Then {xn} converges strongly to �F(T )\EP( f ) x0.
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If E is a Hilbert space, f(yn, y)� 0 for all y2C, n2Zþ in Theorem 4.2, then we get
the modified result [17]:

COROLLARY 4.1 [17] Let C be a nonempty closed convex subset of a Hilbert space E
and T: C!C be a nonexpansive mapping such that F(T ) 6¼ ;. Let {xn} be a sequence
defined as follows:

x0 2C,

yn ¼ �nxn þ ð1� �nÞTxn,

Qn ¼ fz2C : hxn � z, x0 � xni � 0g,

Cn ¼ fz2C : k yn � zk � kxn � zkg,

xnþ1 ¼ PCn\Qn
x0, n2Zþ,

8>>>>>><
>>>>>>:

where {�n}� [0, 1] satisfies lim infn!1�n (1� �n)� a for some a4 0. Then {xn}
converges strongly to PF(T )x0, where PF(T ) is th metric projection of E onto F(T ).

5. Concluding remarks

This article introduces several iterative sequences {xn}, and prove the strong
convergence of the iterative sequences to a fixed point of firmly nonexpansive-type
mapping and a common element of the set of fixed points of firmly nonexpansive-
type mapping and the set of solutions of equilibrium problem, respectively. These
obtained results extend and modify corresponding results of Nakajo and Takahashi
[17] and Takahashi and Zembayashi [22], and the conditions of our results are
different from that of corresponding results of Ceng et al. [4]. As a further research,
by applying the obtained results, one can study the problem of finding a minimizer of
a convex function on E and a solution of variational inequality (inclusion) problems.
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