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Abstract. The notions of α-well-posedness and generalized α-well-posedness

for a system of constrained variational inequalities involving set-valued map-
pings (for short, (SCVI)) are introduced in Hilbert spaces. Existence theorems

of solutions for (SCVI) are established by using penalty techniques. Met-

ric characterizations of α-well-posedness and generalized α-well-posedness, in
terms of the approximate solutions sets, are presented. Finally, the equiva-

lences between (generalized) α-well-posedness for (SCVI) and existence and

uniqueness of its solutions are also derived under quite mild assumptions.

1. Introduction. Variational inequalities which introduced by Stampacchia [28] in
1964, are among the most interesting and intensively studied classes of mathemat-
ics problems and have wide applications in the fields of optimization and control,
economics, electrical networks, game theory, engineering science and transportation
equilibria etc. For the past decades, many existence results and iterative algorithms
for variational inequality, equilibrium and variational inclusion problems have been
studied (see, e.g., [4, 6, 14, 31, 32] and the references therein). Recently, some new
and interesting problems, which are called to be system of variational inequality
problems, were introduced and investigated. The motivations originate from the
fact that under suitable conditions, a Nash equilibrium problem is equivalent to
a system of variational inequalities (see, e.g., [13, 14] and the references therein).
System of variational inequality problems have been well studied and developed in
various aspects. For details, readers are referred to Chen and Wan[5], Cho, Fang,
Huang et al. [6], Kim and Kim [14], Mainge [22], Noor and Noor [24] and the
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references therein. In [23], Moudafi and Noor applied the penalty method to prove
the existence of solutions for a class of generalized variational inequalities with vari-
ational constraints which contained many hierarchical optimization problems such
as variational inequalities with equilibrium constraints, variational inequalities with
fixed-point problem constraints and variational inequalities with minimization prob-
lem constraints as special cases.

On the other hand, well-posedness plays an important role in the stability analysis
and numerical methods for equations and optimization theory and applications. It
was first introduced by Tykhonov [30] for a minimization problem (for short, (MP)),
which has been known as Tykhonov well-posedness. The Tykhonov well-posedness
of (MP) implies the existence and uniqueness of solutions of (MP). In many practi-
cal situations, the solutions of (MP) are more than one. In this situation, the notion
of Tykhonov well-posedness in the generalized sense was introduced, which implies
the existence of solutions of (MP). Since then, many authors investigated the well-
posedness for optimization problems (see, e.g., [7, 8, 19] and the references therein).
In 1981, Lucchetti and Patrone [21] introduced the first notion of well-posedness for
variational inequalities, which is a generalization of the Tykhonov well-posedness
of (MP). Lignola and Morgan [17] also introduced another notion of well-posedness
for variational inequalities, which is distinct from that in Lucchetti and Patrone
[21]. For the past decades, well-posedness and well-posedness in the generalized
sense for variational inequalities and equilibrium problems have been studied (see,
e.g., [3, 9, 10, 12, 16, 26] and the references therein). Lignola and Morgan [18]
introduced α-well-posedness for variational inequalities and Nash equilibrium, fur-
ther, they also discussed the α-well-posedness for parametric noncooperative games
and for optimization problems with constraints defined by parametric Nash equi-
libria, gave some classes of functions that ensure these types of well-posedness in
[19]. Peng and Tang [27] studied the α-well-posedness, L − α-well-posedness, α-
well-posedness in the generalized sense and L−α-well-posedness in the generalized
sense for mixed quasi-variational-like inequality problems, and presented some met-
ric characterizations for these well-posedness. In 2010, Hu et al. [11] investigated
the well-posedness and generalized well-posedness for a system of equilibrium prob-
lems, obtained some metric characterizations for these well-posedness. They also
proved that the well-posedness of system of equilibrium problems is equivalent to
the existence and uniqueness of its solution. Peng and Wu [26] also explored the
generalized Tykhonov well-posedness for system of vector quasi-equilibrium prob-
lems, and gave some metric characterizations for these well-posedness in locally
convex Hausdorff topological vector spaces.

It is natural to raise a question: Whether the existence of solutions and well-
posedness can be applied to a class of system of variational inequalities involving
set-valued mappings related to hierarchical optimization problems or not ?

Inspired and motivated by the works mentioned above, the purpose of this pa-
per is to introduce and investigate a system of constrained variational inequalities
involving set-valued mappings (for short, (SCVI)) in Hilbert spaces. Firstly, exis-
tence theorems of solutions for (SCVI) are established by using penalty techniques.
Moreover, we also introduce the notions of α-well-posedness and generalized α-well-
posedness for (SCVI) in Hilbert spaces. Some metric characterizations of α-well-
posedness and generalized α-well-posedness, in terms of the approximate solutions
sets, are presented. Finally, the equivalences between (generalized) α-well-posedness
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for (SCVI) and existence and uniqueness of its solutions are also derived under quite
mild assumptions.

This paper is organized as follows. In Section 2, we introduce the problem
(SCVI), recall some basic definitions and lemmas. In Section 3, by employing the
penalty method, we investigate the existence of solutions for (SCVI) under some
suitable conditions. In Section 4, we present and study the definition of α-well-
posedness for (SCVI) by using an associated auxiliary problem, and then discuss
some characterizations of the α-well-posedness and generalized α-well-posedness for
(SCVI).

2. Preliminaries. Throughout this paper, without other specifications, let R be
the set of real numbers, E be a Hilbert space, denote its scalar product by 〈·, ·〉 and
its norm by ‖ · ‖. For any (x, y), (x′, y′) ∈ E×E, we define that ‖(x, y)− (x′, y′)‖ =
‖x − x′‖ + ‖y − y′‖. Let T1, T2 : E × E → 2E and M : E → 2E be set-valued
mappings, where 2E stands for the family of all nonempty subsets of E, denote the
graph of M by G(M) = {(x, µ) ∈ E × E : µ ∈ M(x)}. Recall that a mapping
T : E → E is called nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ E. Let
υ1, υ2 ∈ E and M be a maximal monotone operator. Set K = {ν ∈ E : 0 ∈M(ν)}.
We consider the following system of constrained variational inequalities problem
involving set-valued mappings (for short, (SCVI)) is to find (x∗, y∗) ∈ K ×K such
that there exist t1(y∗, x∗) ∈ T1(y∗, x∗), t2(x∗, y∗) ∈ T2(x∗, y∗),{

〈ρ1t1(y∗, x∗)− υ1, x− x∗〉 ≥ 0, ∀x ∈ K,
〈ρ2t2(x∗, y∗)− υ2, y − y∗〉 ≥ 0, ∀y ∈ K, (1)

where ρ1, ρ2 are two positive constants.

We denote the set of solutions to (SCVI) by S.

Observe that (SCVI) can be equivalently posed as the following variational in-
clusion problem of finding (x∗, y∗) ∈ K ×K such that{

0 ∈ ρ1T1(y∗, x∗) +NK(x∗)− υ1,
0 ∈ ρ2T2(x∗, y∗) +NK(y∗)− υ2,

where NK(x) is the normal cone to the set K at x ∈ K, i.e.,

NK(x) =: {ξ ∈ E : 〈ξ, y − x〉 ≤ 0,∀y ∈ K}.

Special cases:
(I) If the set-valued mappings T1 and T2 are the same as the set-valued mapping

T : E → 2E , ρ1 = ρ2 = 1 and υ1 = υ2 = υ, then the problem (SCVI) is equivalent
to find x∗ ∈M−1(0) such that there exists t(x∗) ∈ T (x∗),

〈t(x∗)− υ, x− x∗〉 ≥ 0, ∀x ∈M−1(0), (2)

which is so-called variational inequalities with variational problem constraints (for
short, (VIVPC)). (VIVPC) contain many hierarchical optimization problems (see,
e.g., [23]).

(i) If M := Mg, where g : E×E → R is a monotone function, Mg is the associated
m-monotone operator, that is, ω ∈Mg(x)⇔ g(x, y) + 〈ω, x− y〉 ≥ 0, for all ω ∈ E,
then (VIVPC) is equivalent to find x∗ ∈ EP such that there exists t(x∗) ∈ T (x∗),

〈t(x∗)− υ, x− x∗〉 ≥ 0, ∀x ∈ EP, (3)

where EP = M−1
g (0) = {x̄ ∈ E : g(x̄, y) ≥ 0, ∀y ∈ E}, which is called variational

inequalities with equilibrium constraints.
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(ii) If M := I−F , where F : E → E is a nonexpansive mapping, it is well known
that M is m-monotone, then (VIVPC) is equivalent to find x∗ ∈ Fix(F ) such that
there exists t(x∗) ∈ T (x∗),

〈t(x∗)− υ, x− x∗〉 ≥ 0, ∀x ∈ Fix(F ), (4)

where Fix(F ) = M−1(0) = {x̄ ∈ E : F (x̄) = x̄}, which is called variational inequal-
ities with fixed point problem constraints.

(iii) If φ : E → R∪{+∞} is a proper convex lower semicontinuous function, it is
well known that M := ∂φ is m-monotone, where ∂φ is the subdifferential of φ, then
(VIVPC) is equivalent to find x∗ ∈ Argmin(φ) such that there exists t(x∗) ∈ T (x∗),

〈t(x∗)− υ, x− x∗〉 ≥ 0, ∀x ∈ Argmin(φ), (5)

which is called variational inequalities with minimization problem constraints.

(II) If T1, T2 are two single-valued mapping, and T1(y, x) = T ′1(x, y), then the
problem (SCVI) is equivalent to find (x∗, y∗) ∈ K ×K such that{

〈ρ1T
′
1(x∗, y∗)− υ1, x− x∗〉 ≥ 0, ∀x ∈ K,

〈ρ2T2(x∗, y∗)− υ2, y − y∗〉 ≥ 0, ∀y ∈ K, (6)

where ρ1, ρ2 are two positive constants, which is studied by Moudafi and Noor [23]
and Tang and Liu [29].

We first recall some definitions and lemmas which are needed in the main results
of this work.

Definition 2.1. Let M : E → 2E be a set-valued mapping. M is said to be
(i) monotone if, for any x, y ∈ E, u ∈M(x) and v ∈M(y),

〈u− v, x− y〉 ≥ 0.

(ii)m-monotone(maximal-monotone) if M is monotone and its graph G(M) =
{(x, ζ) : ζ ∈M(x)} is not properly contained in the graph of any other monotone.

Remark 1. (i) If M is m-monotone, then the set M−1(0) = {x ∈ E : 0 ∈ M(x)}
is nonempty closed and convex;

(ii) M is m-monotone if and only if M is monotone and (I +σM)(E) = E holds
for every σ > 0, where I is the identity operator on E.

Definition 2.2. [14] Let K1,K2 be nonempty subsets of E. The Hausdorff
pesudo-metric H(·, ·) between K1 and K2 is defined by

H(K1,K2) = max{e(K1,K2), e(K2,K1)},
where e(K1,K2) = supk1∈K1

d(k1,K2) with d(k1,K2) = infk2∈K2
‖k1 − k2‖.

It is worth mentioning that if the domain of the Hausdorff pesudo-metric H(·, ·)
is confined to closed bounded subsets of E, then H(·, ·) is the Hausdorff metric.

Now we give some characterizations on the Hausdorff pesudo-metric H(·, ·).

Lemma 2.3. Let K1,K2 and K3 be nonempty subsets of E, T : E → E be a
nonexpansive mapping. Then the following hold:

(i) H(K1,K1) = 0;
(ii) H(K1,K3) = H(K3,K1);
(iii) H(TK1, TK2) ≤ H(K1,K2);
(iv) H(K1,K3) ≤ H(K1,K2) +H(K2,K3);
(v) H(rK1, rK3) = |r|H(K1,K3), ∀r ∈ R.
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Proof. (i) and (ii) directly follow from Definition 2.2. We only need to prove (iii),
(iv) and (v).

(iii) Since T : E → E is a nonexpansive mapping, one has

e(TK1, TK2) = sup
k1∈K1

inf
k2∈K2

‖Tk1, Tk2‖ (7a)

≤ sup
k1∈K1

inf
k2∈K2

‖k1 − k2‖ = e(K1,K2). (7b)

Similarly, we obtain

e(TK2, TK1) ≤ e(K2,K1). (8)

By Definition 2.2, and from (7) and (8), we have

H(TK1, TK2) = max{e(TK1, TK2), e(TK2, TK1)}
≤ max{e(K1,K2), e(K2,K1)} = H(K1,K2),

that is, H(TK1, TK2) ≤ H(K1,K2)

(iv) Note that

e(K1,K3) = sup
k1∈K1

inf
k3∈K3

‖k1 − k3‖

≤ sup
k1∈K1

inf
k3∈K3

inf
k2∈K2

(‖k1 − k2‖+ ‖k2 − k3‖)

= sup
k1∈K1

inf
k2∈K2

‖k1 − k2‖+ sup
k2∈K2

inf
k3∈K3

‖k2 − k3‖

= e(K1,K2) + e(K2,K3).

Similarly, we can get

e(K3,K1) ≤ e(K3,K2) + e(K2,K1).

Again from Definition 2.2, we conclude that

H(K1,K3) ≤ H(K1,K2) +H(K2,K3).

(v) For any r ∈ R, one has

e(rK1, rK3) = |r| sup
k1∈K1

inf
k3∈K3

‖k1 − k3‖ = |r|e(K1,K3).

This follows that H(rK1, rK3) = |r|H(K1,K3).

Definition 2.4. Let Γ : E × E → 2E be a set-valued mapping. Γ is called:
(i) (ι, γ)-Lipschitzian if there exist ι > 0 and γ > 0 such that

H(Γ(x1, y1),Γ(x2, y2)) ≤ ι‖x1 − x2‖+ γ‖y1 − y2‖, ∀(x1, y1), (x2, y2) ∈ E × E;

(ii) β-strongly monotone with respect to the second argument if, there exists β > 0
such that, for each x ∈ E,

〈η(x, y1)− η(x, y2), y1 − y2〉 ≥ β‖y1 − y2‖2, ∀yi ∈ E, η(x, yi) ∈ Γ(x, yi), i = 1, 2;

(iii) coercive with respect to the second argument if, there exists a continuous
increasing function C : R+ → R+ with limt→+∞ C(t) = +∞ such that for each
x ∈ E,

〈η(x, y), y〉 ≥ C(‖y‖)‖y‖, ∀y ∈ E, η(x, y) ∈ Γ(x, y).
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Definition 2.5. [15] Let K be a nonempty and bounded subset of E. The Kura-
towski measure of noncompactness µ of the set K is defined by

µ(K) = inf{ε > 0 : K ⊂ ∪ni=1Ki,diamKi < ε, i = 1, 2, · · · , n},

where diam stands for the diameter of a set.

Definition 2.6. [5, 6] Let the set-valued mapping M : E → 2E be m-monotone.
For any positive number δ > 0, the mapping RMδ : E → E defined by

RMδ (x) = (I + δM)−1(x), x ∈ E,

is called the resolvent operator associated with M and δ, where I is the identity
operator on E.

Remark 2. It is well known that the resolvent operator RMδ : E → E is single-
valued and nonexpansive for all δ > 0, and related to its Yosida approximate, i.e.,

Mδ(x) :=
x−RMδ (x)

δ with Mδ(x) ∈M(RMδ (x)).

Definition 2.7. [1, 23] Let Mn,M : E → 2E be m-monotone mappings for n ∈ N .
A sequence of set-valued mappings {Mn} is said to be graph-convergent to the
set-valued mapping M if, for any (x, ν) ∈ G(M), there exists (xn, νn) ∈ G(Mn)
such that (xn, νn) converges strongly to (x, ν).

Remark 3. (i) Let {tn} be a sequence of positive real numbers, and M be m-
monotone. If tn → +∞, then tnM graph-converges to NM−1(0) (see, e.g., [20]);

(ii) Let M,Mn, M̄ , M̄n be m-monotone mappings for n ∈ N such that M̄, M̄n

are Lipschitzian with constant κ > 0 (independent of n), that is, H(M̄(x), M̄(y)) ≤
κ‖x− y‖ and H(M̄n(x), M̄n(y)) ≤ κ‖x− y‖ for all x, y ∈ E. If Mn graph-converges
to M and M̄n graph-converges to M̄ , then Mn + M̄n graph-converges to M + M̄
(see, e.g., [2]).

3. Existence of solutions for (SCVI). In this section, we shall investigate the
existence of solutions for (SCVI) under some suitable conditions. We firstly consider
the following auxiliary variational inclusions problem (for short, (AVI)) related to
(SCVI): find (xε, yδ) ∈ E × E such that{

υ1 ∈ ρ1T1(yδ, xε) + 1
εP (xε),

υ2 ∈ ρ2T2(xε, yδ) + 1
δP (yδ),

(9)

where ρ1, ρ2, ε, δ are positive real numbers, υ1, υ2 ∈ E and P := M1 = I−RM1 which
will act as a penalty operator of the set of zeroes to M . For example, if M = NΛ

the normal cone to a closed convex set Λ, then P := I − PΛ is the classical penalty
operator of Λ (see, e.g., [25]), where PΛ is the metric projection operator from E
onto the closed convex set Λ.

It is clear that the Yosida approximate P := M1 = I − RM1 is m-monotone.
Moreover, we can reformulate (AVI) as the following equivalent form:{

xε ∈ RPε−1(xε + υ1 − ρ1T1(yδ, xε)),
yδ ∈ RPδ−1(yδ + υ2 − ρ2T2(xε, yδ)).

(10)

Using the equivalent form of (AVI), we suggest the following iterative method
for solving (AVI).
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Algorithm 1. Let E be a real Hilbert space, ρ1, ρ2, ε, δ > 0, and let T1, T2 : E ×
E → 2E be two set-valued mappings, M : E → 2E be m-monotone and its Yosida
approximate P = I − RM1 . For any given points x0, y0 ∈ E, define sequences {xn}
and {yn} in E by the following algorithm{

yn+1 ∈ RPδ−1(yn + υ2 − ρ2T2(xn, yn)),
xn+1 ∈ RPε−1(xn + υ1 − ρ1T1(yn, xn)), n = 0, 1, 2, ....

(11)

Remark 4. Algorithm 1 is an explicit iterative method, which is distinct from the
implicit iterative algorithm(3.7) of Moudafi and Noor [23].

Next we show the existence of solutions to (AVI) by Algorithm 1.

Theorem 3.1. Let E be a real Hilbert space, ρ1, ρ2 be two positive constants,
M : E → 2E be m-monotone, and let Ti : E × E → 2E be (ιi, γi)-Lipschitzian
and βi-strongly monotone with respect to the second argument, i = 1, 2 such that
max{ρ1ι1 +

√
1− 2ρ2β2 + ρ2

2γ
2
2 , ρ2ι2 +

√
1− 2ρ1β1 + ρ2

1γ
2
1} < 1. Then for any given

ε > 0, δ > 0, there exists (xε, yδ) which is a solution of the problem (AVI).

Proof. For any given x0, y0 ∈ E, the sequences {xn} and {yn} generated by Algo-
rithm 1. Then, from Lemma 2.3,

‖xn+1 − xn‖
≤ H(RPε−1(xn + υ1 − ρ1T1(yn, xn)), RPε−1(xn−1 + υ1 − ρ1T1(yn−1, xn−1)))

≤ H(xn − ρ1T1(yn, xn), xn−1 − ρ1T1(yn−1, xn−1))

≤ H(xn − ρ1T1(yn, xn), xn − ρ1T1(yn−1, xn))

+H(xn − ρ1T1(yn−1, xn), xn−1 − ρ1T1(yn−1, xn−1))

= ρ1H(T1(yn, xn), T1(yn−1, xn))

+H(xn − ρ1T1(yn−1, xn), xn−1 − ρ1T1(yn−1, xn−1)).

Since Ti : E×E → 2E is (ιi, γi)-Lipschitzian and βi-strongly monotone with respect
to the second argument, i = 1, 2, we have

e(xn − ρ1T1(yn−1, xn), xn−1 − ρ1T1(yn−1, xn−1))

= sup
t1(yn−1,xn)∈T1(yn−1,xn)

inf
t′1(yn−1,xn−1)∈T1(yn−1,xn−1)

‖xn − xn−1

−ρ1(t1(yn−1, xn)− t′1(yn−1, xn−1))‖
and

‖xn − xn−1 − ρ1(t1(yn−1, xn)− t′1(yn−1, xn−1))‖2

= ‖xn − xn−1‖2 − 2ρ1〈t1(yn−1, xn)− t′1(yn−1, xn−1), xn − xn−1〉
+ρ2

1‖t1(yn−1, xn)− t′1(yn−1, xn−1)‖2

≤ (1− 2ρ1β1 + ρ2
1γ

2
1)‖xn − xn−1‖2.

Consequently,

e(xn − ρ1T1(yn−1, xn), xn−1 − ρ1T1(yn−1, xn−1))

≤
√

1− 2ρ1β1 + ρ2
1γ

2
1‖xn − xn−1‖.

Similarly, we have

e(xn−1 − ρ1T1(yn−1, xn−1), xn − ρ1T1(yn−1, xn))

≤
√

1− 2ρ1β1 + ρ2
1γ

2
1‖xn − xn−1‖.
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From Definition 2.2 and the above two inequalities, it follows that

H(xn − ρ1T1(yn−1, xn), xn−1 − ρ1T1(yn−1, xn−1))

≤
√

1− 2ρ1β1 + ρ2
1γ

2
1‖xn − xn−1‖.

Thus, we get

‖xn+1 − xn‖ ≤ ρ1ι1‖yn − yn−1‖+
√

1− 2ρ1β1 + ρ2
1γ

2
1‖xn − xn−1‖. (12)

Similarly, one can conclude

‖yn+1 − yn‖ ≤ ρ2ι2‖xn − xn−1‖+
√

1− 2ρ2β2 + ρ2
2γ

2
2‖yn − yn−1‖. (13)

In view of max{ρ1ι1 +
√

1− 2ρ2β2 + ρ2
2γ

2
2 , ρ2ι2 +

√
1− 2ρ1β1 + ρ2

1γ
2
1} < 1. Set

Υ = max{ρ1ι1 +
√

1− 2ρ2β2 + ρ2
2γ

2
2 , ρ2ι2 +

√
1− 2ρ1β1 + ρ2

1γ
2
1}. Then 0 ≤ Υ < 1.

From both (12) and (13), it follows that

‖(xn+1, yn+1)− (xn, yn)‖
= ‖xn+1 − xn‖+ ‖yn+1 − yn‖

≤ (ρ1ι1 +
√

1− 2ρ2β2 + ρ2
2γ

2
2)‖yn − yn−1‖

+(ρ2ι2 +
√

1− 2ρ1β1 + ρ2
1γ

2
1)‖xn − xn−1‖

≤ Υ‖(xn, yn)− (xn−1, yn−1)‖,

which implies that the sequences {xn} and {yn} are Cauchy sequences. Therefore,
there exists (xε, yδ) ∈ E ×E such that (xn, yn)→ (xε, yδ). By Remark 2 and (11),
one has {

yδ ∈ RPδ−1(yδ + υ2 − ρ2T2(xε, yδ)),
xε ∈ RPε−1(xε + υ1 − ρ1T1(yδ, xε)),

that is, {
υ1 ∈ ρ1T1(yδ, xε) + 1

εP (xε),
υ2 ∈ ρ2T2(xε, yδ) + 1

δP (yδ).

Therefore, (xε, yδ) is a solution of (AVI).

Theorem 3.2. Let E be a real Hilbert space, M : E → 2E be m-monotone with
0 ∈ M−1(0), T1, T2 : E × E → 2E be coercive and m-monotone with respect to the
second argument. Assume that all the conditions of Theorem 3.1 are satisfied. Then
(SCVI) has a solution.

Proof. By the method of Moudafi and Noor [23]. For any given υ1, υ2 ∈ E and
ε, δ > 0, from Theorem 3.1, we know that (AVI) has a solution (xε, yδ), that is,
there exist t1(yδ, xε) ∈ T1(yδ, xε), t2(xε, yδ) ∈ T1(xε, yδ) such that{

υ1 = ρ1t1(yδ, xε) + 1
εP (xε),

υ2 = ρ2t2(xε, yδ) + 1
δP (yδ).

(14)

Moreover, we have

lim
ε→0
‖P (xε)‖ = lim

δ→0
‖P (yδ)‖ = 0. (15)
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Since T1, T2 : E × E → 2E are coercive with respect to the second argument, we
obtain

〈υ1, xε〉 = 〈ρ1t1(yδ, xε), xε〉+
1

ε
〈P (xε), xε〉

≥ ρ1C(‖xε‖)‖xε‖+
1

ε
〈P (xε)− P (0), xε − 0〉

≥ ρ1C(‖xε‖)‖xε‖
and

〈υ2, yδ〉 = 〈ρ2t2(xε, yδ), yδ〉+
1

δ
〈P (yδ), yδ〉

≥ ρ2C(‖yδ‖)‖yδ‖+
1

δ
〈P (yδ)− P (0), yδ − 0〉

≥ ρ2C(‖yδ‖)‖yδ‖,
which imply that {xε} and {yδ} are bounded. Again from (15), we may pick up
xn = xεn , yn = yδn such that xn and yn converge weakly to x∗ and y∗ as εn →
0, δn → 0, respectively.

Now, we show that T1(yn, ·) graph-converges to T1(y∗, ·). Taking any (x, τ) ∈
G(T1(y∗, ·)) and (x̂n, τn) ∈ G(T1(yn, ·)) such that x̂n → x (we may take x̂n = x, if
necessary). Since T1 is (ι1, γ1)-Lipschitzian,

‖τn − τ‖ ≤ H(T1(yn, x̂n), T1(y∗, x)) ≤ ι1‖yn − y∗‖+ γ1‖x̂n − x‖. (16)

It follows from (14) that there exists t2(xn, yn) ∈ T2(xn, yn) such that

υ2 −
1

δn
P (yn) = ρ2t2(xn, yn). (17)

Since T2 is β2-strongly monotone with respect to the second argument, for any
t2(xn, y

∗) ∈ T2(xn, y
∗), we have

ρ2β2‖y∗ − yn‖2 ≤ 〈ρ2t2(xn, y
∗)− (υ2 −

1

δn
P (yn)), y∗ − yn〉

= 〈ρ2t2(xn, y
∗)− υ2, y

∗ − yn〉+
1

δn
〈P (yn), y∗ − yn〉.

In view of (15), we obtain ‖y∗ − yn‖ → 0. Together with (16) it follows that
‖τn − τ‖ → 0, that is, τn converges strongly to τ . Therefore, T1(yn, ·) graph-
converges to T1(y∗, ·). Similarly, T2(xn, ·) graph-converges to T2(x∗, ·). Note that

0 = P (x) = (I −RM1 )(x) ⇔ x = RM1 (x) = (I +M)−1(x)

⇔ x ∈M−1(0).

From Remark 3, this yields that ρ1T1(yn, ·) + 1
εn
P and ρ2T2(xn, ·) + 1

δn
P graph-

converge to ρ1T1(y∗, ·) + NM−1(0) and ρ2T2(x∗, ·) + NM−1(0), respectively. Note
that {

υ1 ∈ ρ1T1(yn, xn) + 1
εn
P (xn),

υ2 ∈ ρ2T2(xn, yn) + 1
δn
P (yn).

(18)

Taking the limit in (18), one can obtain{
0 ∈ ρ1T1(y∗, x∗) +NM−1(0)(x

∗)− υ1,
0 ∈ ρ2T2(x∗, y∗) +NM−1(0)(y

∗)− υ2.
(19)

Therefore, (x∗, y∗) is a solution of (SCVI).
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Remark 5. If T1, T2 are two single-valued mapping, and T1(y, x) = T ′1(x, y), then
Theorem 3.1 and Theorem 3.2 are reduced to Proposition 3.1 and Theorem 3.1 in
[23], respectively.

4. Characterizations of α-well-posedness for (SCVI). In this section, we
shall present some characterizations of the α-well-posedness and generalized α-
well-posedness for (SCVI) by employing an associated auxiliary problem. Let
M : E → 2E be m-monotone, K = {ν ∈ E : 0 ∈ M(ν)} and α > 0. We first-
ly introduce the following system of constrained variational inequalities problem
(for short, (SCVIα)) related to (SCVI): find (x∗, y∗) ∈ K ×K such that there exist
t1(y∗, x∗) ∈ T1(y∗, x∗), t2(x∗, y∗) ∈ T2(x∗, y∗),{

〈ρ1t1(y∗, x∗)− υ1, x− x∗〉+ α
2 ‖x− x

∗‖2 ≥ 0, ∀x ∈ K,
〈ρ2t2(x∗, y∗)− υ2, y − y∗〉+ α

2 ‖y − y
∗‖2 ≥ 0, ∀y ∈ K, (20)

where ρ1, ρ2 are two positive constants.

We denote the set of solutions to (SCVIα) by Sα. We now establish the relations
between (SCVI) and (SCVIα).

Lemma 4.1. Let E be a real Hilbert space, T1, T2 : E × E → 2E be two set-valued
mappings. Then (x∗, y∗) ∈ S if and only if (x∗, y∗) ∈ Sα.

Proof. The necessity holds trivially. For the sufficiency, assume that (x∗, y∗) ∈ Sα.
Taking any x, y ∈ K,λ ∈ (0, 1), set xλ = λx+ (1− λ)x∗, yλ = λy+ (1− λ)y∗. Note
that K = {ν ∈ E : 0 ∈M(ν)} is closed and convex. So, (xλ, yλ) ∈ K×K. By (20),
we have {

〈ρ1t1(y∗, x∗)− υ1, xλ − x∗〉+ α
2 ‖xλ − x

∗‖2 ≥ 0,
〈ρ2t2(x∗, y∗)− υ2, yλ − y∗〉+ α

2 ‖yλ − y
∗‖2 ≥ 0,

that is, {
〈ρ1t1(y∗, x∗)− υ1, x− x∗〉+ αλ

2 ‖x− x
∗‖2 ≥ 0,

〈ρ2t2(x∗, y∗)− υ2, y − y∗〉+ αλ
2 ‖y − y

∗‖2 ≥ 0.
(21)

Let λ→ 0 in (21). Then{
〈ρ1t1(y∗, x∗)− υ1, x− x∗〉 ≥ 0, ∀x ∈ K,
〈ρ2t2(x∗, y∗)− υ2, y − y∗〉 ≥ 0, ∀y ∈ K. (22)

Therefore, (x∗, y∗) ∈ S.

Next, we introduce the notions of (generalized) α-well-posedness for (SCVI).

Definition 4.2. (i) A sequence {(xn, yn)} in K × K is called α-approximating
sequence for (SCVI) if, there exist t1(yn, xn) ∈ T1(yn, xn), t2(xn, yn) ∈ T2(xn, yn)
and a sequence {εn} with εn > 0, εn → 0 such that{

〈ρ1t1(yn, xn)− υ1, x− xn〉+ α
2 ‖x− xn‖

2 + εn ≥ 0, ∀x ∈ K,
〈ρ2t2(xn, yn)− υ2, y − yn〉+ α

2 ‖y − yn‖
2 + εn ≥ 0, ∀y ∈ K.

(ii) A sequence {(xn, yn)} in K × K is called α-approximating sequence for
(SCVIα) if, there exist t1(yn, xn) ∈ T1(yn, xn), t2(xn, yn) ∈ T2(xn, yn) and a se-
quence {εn} with εn > 0, εn → 0 such that{

〈ρ1t1(yn, xn)− υ1, x− xn〉+ α‖x− xn‖2 + εn ≥ 0, ∀x ∈ K,
〈ρ2t2(xn, yn)− υ2, y − yn〉+ α‖y − yn‖2 + εn ≥ 0, ∀y ∈ K.
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Remark 6. (i) It is easy to see that any α-approximating sequence for (SCVI) is
α-approximating sequence for (SCVIα);

(ii)If α = 0 in Definition 4.2, then the α-approximating sequence for (SCVI)
reduces to the approximating sequence for (SCVI);

(iii) The α-approximating sequence for (SCVI) is also called the approximating
sequence for (SCVIα).

Definition 4.3. (i) (SCVI) is said to be α-well-posed if it has a unique solution
and every α-approximating sequence for (SCVI) converges strongly to the unique
solution;

(ii) (SCVI) is said to be generalized α-well-posed if the solution set S of (SCVI)
is nonempty and every α-approximating sequence for (SCVI) has a subsequence
which converges strongly to some point of S.

Remark 7. If α = 0 in Definition 4.3, then the α-well-posedness and generalized
α-well-posedness reduce to the well-posedness and generalized well-posedness, re-
spectively; The generalized α-well-posedness shows that the solution set S of (SCVI)
is nonempty and compact.

Definition 4.4. (i) (SCVIα) is said to be well-posed if it has a unique solution
and every approximating sequence for (SCVIα) converges strongly to the unique
solution;

(ii) (SCVIα) is said to be generalized well-posed if the solution set Sα of (SCVIα)
is nonempty and every approximating sequence for (SCVIα) has a subsequence
which converges strongly to some point of Sα;

(iii) (SCVIα) is said to be α-well-posed if it has a unique solution and every
α-approximating sequence for (SCVIα) converges strongly to the unique solution;

(iv) (SCVIα) is said to be generalized α-well-posed if the solution set Sα of
(SCVIα) is nonempty and every α-approximating sequence for (SCVIα) has a sub-
sequence which converges strongly to some point of Sα.

Remark 8. From Definitions 4.2-4.4 and Remarks 6-7, it follows that the well-
posedness and generalized well-posedness of (SCVIα) imply the α-well-posedness
and generalized α-well-posedness of (SCVI), respectively.

The following lemma shows that the relations between the α-well-posedness and
generalized α-well-posedness for (SCVI) and the well-posedness and generalized
well-posedness for (SCVIα).

Lemma 4.5. Let E be a real Hilbert space, Ti : E×E → 2E be (ιi, γi)-Lipschitzian,
i = 1, 2. Then the following hold:

(i) (SCVI) is α-well-posed if and only if (SCVIα) is well-posed;
(ii) (SCVI) is generalized α-well-posed if and only if (SCVIα) is generalized well-

posed.

Proof. It directly follows from Lemma 4.1, Definitions 4.2-4.4 and Remarks 6-7.

Next, we show that the relations between the α-well-posedness and generalized
α-well-posedness for (SCVI) and that for (SCVIα).

Lemma 4.6. Let E be a real Hilbert space, Ti : E×E → 2E be (ιi, γi)-Lipschitzian,
i = 1, 2. Then the following hold:

(i) if (SCVIα) is α-well-posed, then (SCVI) is also α-well-posed;
(ii) if (SCVIα) is generalized α-well-posed, then (SCVI) is also generalized α-

well-posed.
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Proof. It immediately follows from Lemma 4.1, Definition 4.4 and Remarks 6-7.

In order to illustrate some metric characterizations of α-well-posedness and gen-
eralized α-well-posedness, for any ε ≥ 0, we introduce the following approximating
set:

Q(ε) = {(x̃, ỹ) ∈ K ×K : ∃t1(ỹ, x̃) ∈ T1(ỹ, x̃), t2(x̃, ỹ) ∈ T2(x̃, ỹ),

〈ρ1t1(ỹ, x̃)− υ1, x− x̃〉+
α

2
‖x− x̃‖2 + ε ≥ 0,

〈ρ2t2(x̃, ỹ)− υ2, y − ỹ〉+
α

2
‖y − ỹ‖2 + ε ≥ 0, ∀x, y ∈ K}.

It is easy to see that Q(ε1) ⊂ Q(ε2) for all ε1, ε2 ≥ 0 with ε1 ≤ ε2.

Theorem 4.7. Let E be a real Hilbert space, and Ti : E × E → 2E be (ιi, γi)-
Lipschitzian, i = 1, 2. Then (SCVI) is α-well-posed if and only if Q(ε) 6= ∅ for all
ε > 0 and diam(Q(ε))→ 0 as ε→ 0.

Proof. If (SCVI) is α-well-posed, then there exists a unique (x∗, y∗) ∈ K ×K such
that there exist t1(y∗, x∗) ∈ T1(y∗, x∗), t2(x∗, y∗) ∈ T2(x∗, y∗),{

〈ρ1t1(y∗, x∗)− υ1, x− x∗〉 ≥ 0, ∀x ∈ K,
〈ρ2t2(x∗, y∗)− υ2, y − y∗〉 ≥ 0, ∀y ∈ K.

Moreover,{
〈ρ1t1(y∗, x∗)− υ1, x− x∗〉+ α

2 ‖x− x
∗‖2 ≥ 0, ∀x ∈ K,

〈ρ2t2(x∗, y∗)− υ2, y − y∗〉+ α
2 ‖y − y

∗‖2 ≥ 0, ∀y ∈ K.
Therefore, (x∗, y∗) ∈ Q(ε),∀ε > 0, that is, Q(ε) 6= ∅.

Suppose that diam(Q(ε)) 6→ 0 as ε → 0. Then there exists σ > 0, for any
sequence {εn} with εn > 0, εn → 0 and (xn, yn), (x′n, y

′
n) ∈ Q(εn) such that

‖(x′n, y′n)− (xn, yn)‖ > σ, ∀n ∈ N. (23)

Clearly, {(xn, yn)}, {(x′n, y′n)} are α-approximating sequences. Then (xn, yn) and
(x′n, y

′
n) must converge strongly to the unique solution (x∗, y∗) ∈ S, which contradict

(23).
For the sufficiency, assume that Q(ε) 6= ∅,∀ε > 0 and diam(Q(ε)) → 0 as

ε → 0. Let {(xn, yn)} be an α-approximating sequence for (SCVI). Then there
exists a sequence {εn} with εn > 0, εn → 0 such that there exist t1(yn, xn) ∈
T1(yn, xn), t2(xn, yn) ∈ T2(xn, yn),{

〈ρ1t1(yn, xn)− υ1, x− xn〉+ α
2 ‖x− xn‖

2 + εn ≥ 0, ∀x ∈ K,
〈ρ2t2(xn, yn)− υ2, y − yn〉+ α

2 ‖y − yn‖
2 + εn ≥ 0, ∀y ∈ K, (24)

that is, (xn, yn) ∈ Q(εn) for n ∈ N . In the light of diam(Q(ε)) → 0 as ε → 0,
the solution of (SCVIα) is unique and so, {(xn, yn)} is a Cauchy sequence which
converges strongly to (x∗, y∗) ∈ K × K. Since Ti is (ιi, γi)-Lipschitzian, i = 1, 2,
and from (24), there exist t1(y∗, x∗) ∈ T1(y∗, x∗), t2(x∗, y∗) ∈ T2(x∗, y∗),{

〈ρ1t1(y∗, x∗)− υ1, x− x∗〉+ α
2 ‖x− x

∗‖2 ≥ 0, ∀x ∈ K,
〈ρ2t2(x∗, y∗)− υ2, y − y∗〉+ α

2 ‖y − y
∗‖2 ≥ 0, ∀y ∈ K. (25)

Consequently, (x∗, y∗) is the unique solution of (SCVIα). By Lemma 4.1, (x∗, y∗) ∈
Sα is also the unique solution of (SCVI). Therefore, (SCVI) is α-well-posed.

Now we give a Furi-Vignoli type characterization of the generalized α-well-
posedness for (SCVI) by using Kuratowski measure of noncompactness instead of
the diameter.
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Theorem 4.8. Assume that all the conditions of Theorem 4.7 are satisfied. Then
(SCVI) is generalized α-well-posed if and only if Q(ε) 6= ∅,∀ε > 0 and µ(Q(ε))→ 0
as ε→ 0.

Proof. The proof is similar to the proof of Theorem 3.2 in [11] and so it is omitted.

It is well known that the well-posedness of a optimization problem is equivalent
to the existence and uniqueness of its solutions. In [11], Hu, Fang, Huang et al.
also obtained the relations among the well-posedness, existence and uniqueness of
solution for system of equilibrium problem. Next, we establish analogous results for
the α-well-posedness and generalized α-well-posedness for (SCVI).

Theorem 4.9. Let E be a real Hilbert space, Ti : E×E → 2E be (ιi, γi)-Lipschitzian
and βi-strongly monotone with respect to the second argument, i = 1, 2. Assume that
the following conditions hold:

(i) α− ρiβi ≤ 0, i = 1, 2;
(ii) for any x, y, z ∈ E, ti(x, y) ∈ Ti(x, y), the mapping (x, z) 7→ 〈ti(x, y), z〉 is

convex.
Then (SCVI) is α-well-posed if and only if it has a unique solution.

Proof. If (SCVI) is α-well-posed, from Definition 4.3, we know that (SCVI) has a
unique solution.

Conversely, if (SCVI) has a unique solution (x∗, y∗), then, from Lemma 4.1, Sα =
{(x∗, y∗)}. It follows that there exist t1(y∗, x∗) ∈ T1(y∗, x∗), t2(x∗, y∗) ∈ T2(x∗, y∗)
such that{

〈ρ1t1(y∗, x∗)− υ1, x− x∗〉+ α
2 ‖x− x

∗‖2 ≥ 0, ∀x ∈ K,
〈ρ2t2(x∗, y∗)− υ2, y − y∗〉+ α

2 ‖y − y
∗‖2 ≥ 0, ∀y ∈ K. (26)

For any x, y, z ∈ E, t1(y, x) ∈ T1(y, x), t2(x, y) ∈ T2(x, y), the mappings f, g :
E × E × E → R defined by

f(x, y, z) = 〈ρ2t2(x, y)− υ2, z − y〉+
α

2
‖z − y‖2,

g(y, x, z) = 〈ρ1t1(y, x)− υ1, z − x〉+
α

2
‖z − x‖2.

Obviously, f(x, y, y) = g(y, x, x) = 0. Since Ti : E × E → 2E is (ιi, γi)-Lipschitzian
and βi-strongly monotone with respect to the second argument, i = 1, 2, it follows
that for each (x, y) ∈ E × E, f(x, ·, ·) and g(y, ·, ·) are continuous. Again from (i),
we have

f(x, y, z) + f(x, z, y) = 〈ρ2(t2(x, y)− t2(x, z)), z − y〉+ α‖z − y‖2

≤ (α− ρ2β2)‖z − y‖2

≤ 0

and so, g(y, x, z)+g(x, z, y) ≤ 0. Therefore, f(x, ·, ·) and g(x, ·, ·) are monotone and
continuous. By (ii), f(·, y, ·) and g(·, x, ·) are convex and continuous. So, f and g
satisfy the conditions of Theorem 4.1 in [11]. By the same argument as Theorem
4.1 in [11], we get that (SCVIα) is well-posed. Together with Lemma 4.5 this yields
that (SCVI) is α-well-posed.

Theorem 4.10. Assume that there exists ε0 > 0 such that the approximating set
Q(ε0) is nonempty bounded, and all the conditions of Theorem 4.9 are satisfied.
Then (SCVI) is generalized α-well-posed.
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Proof. By the same argument of Theorem 4.2 in [11], (SCVIα) is generalized well-
posed. From Lemma 4.5 it follows that (SCVI) is generalized α-well-posed.

Theorem 4.11. Assume that there exists ε0 > 0 such that the approximating set
Q(ε0) is bounded, and all the conditions of Theorem 4.9 are satisfied. Then (SCVI)
is generalized α-well-posed if and only if S 6= ∅.

Proof. It directly follows from Definition 2.2 and Theorem 4.10.
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[3] L. C. Ceng, N. Hadjisavvas, S. Schaible and J. C. Yao, Well-posedness for mixed

quasivariational-like inequalities, J. Optim. Theory Appl., 139 (2008), 109–125.

[4] J. W. Chen, Z. Wan and Y. J. Cho, Levitin-Polyak well-posedness by perturbations for systems
of set-valued vector quasi-equilibrium problems, Math. Meth. Oper. Res., 77 (2013), 33–64.

[5] J. W. Chen and Z. Wan, Existence of solutions and convergence analysis for a system of

quasivariational inclusions in Banach spaces, J. Inequal. Appl., 49 (2011).
[6] Y. J. Cho, Y. P. Fang, N. J. Huang and N. J. Hwang, Algorithms for systems of nonlinear

variational inequalities, J. Korean Math. Soc., 41 (2004), 203–210.

[7] Y. P. Fang, R. Hu and N. J. Huang, Well-posedness for equilibrium problems and for opti-
mization problems with equilibrium constraints, Comput. Math. Appl., 55 (2008), 89–100.

[8] M. Furi and A. Vignoli, About well-posed optimization problems for functions in metric s-

paces, J. Optim. Theory Appl., 5 (1970), 225–229.
[9] X. X. Huang and X. Q. Yang, Levitin-Polyak well-posedness in generalized variational in-

equalities problems with functional constraints, J. Ind. Manag. Optim., 3 (2007), 671–684.
[10] X. X. Huang and X. Q. Yang, Levitin-Polyak well-posedness of vector variational inequality

problems with functional constraints, Numer. Funct. Anal. Optim., 31 (2010), 671–684.

[11] R. Hu, Y. P. Fang, N. J. Huang and M. M. Wong, Well-posedness of systems of equilibrium
problems, Taiwanese J. Math., 14 (2010), 2435–2446.

[12] R. Hu, Y. P. Fang and N. J. Huang, Levitin-Polyak well-posedness for variational inequalities

and for optimization problems with variational inequalities, J. Ind. Manag. Optim., 6 (2010),
465–481.

[13] G. Kassay, J. Kolumban and Z. Pales, On Nash stationary points, Publ. Math. Debrecen, 54

(1999), 267–279.
[14] J. K. Kim and D. S. Kim, A new system of generalized nonlinear mixed variational inequalities

in Hilbert spaces, J. Convex Anal., 11 (2004), 235–243.

[15] K. Kuratowski, “Topology,” (Vols. 1 and 2), Academic Press, New York, 1968.
[16] C. S. Lalitha and G. Bhatia, Well-posedness for parametric quasivariational inequality prob-

lems and for optimizations problems with quasivariational inequality constraints, Optim., 59
(2010), 997–1011.

[17] M. B. Lignola and J. Morgan, Well-posedness for optimization problems with constraints

defined by variational inequalities having a unique solution, J. Glob. Optim., 16 (2000),
57–67.

[18] M. B. Lignola and J. Morgan, Approximating solutions and α-well-posedness for variational
inequalities and Nash equilibria, in: “Decision and Control in Management Science,” Kluwer
Academic Publishers, (2001), 367–378.

[19] M. B. Lignola and J. Morgan, α-well-posedness for Nash equilibria and for optimization

problems with Nash equilibrium constraints, J. Glob. Optim., 36 (2006), 439–459.
[20] P. L. Lions, Two remarks on the convergence of convex functions and monotone operator,

Nonlinear Anal., 2 (1978), 553–562.

http://www.ams.org/mathscinet-getitem?mr=MR1949627&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2438597&return=pdf
http://dx.doi.org/10.1007/s10957-008-9428-9
http://dx.doi.org/10.1007/s10957-008-9428-9
http://www.ams.org/mathscinet-getitem?mr=MR3015624&return=pdf
http://dx.doi.org/10.1007/s00186-012-0414-5
http://dx.doi.org/10.1007/s00186-012-0414-5
http://www.ams.org/mathscinet-getitem?mr=MR2837904&return=pdf
http://dx.doi.org/10.1186/1029-242X-2011-49
http://dx.doi.org/10.1186/1029-242X-2011-49
http://www.ams.org/mathscinet-getitem?mr=MR2050158&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2378503&return=pdf
http://dx.doi.org/10.1016/j.camwa.2007.03.019
http://dx.doi.org/10.1016/j.camwa.2007.03.019
http://dx.doi.org/10.1007/BF00927717
http://dx.doi.org/10.1007/BF00927717
http://www.ams.org/mathscinet-getitem?mr=MR2379875&return=pdf
http://dx.doi.org/10.3934/jimo.2007.3.671
http://dx.doi.org/10.3934/jimo.2007.3.671
http://www.ams.org/mathscinet-getitem?mr=MR2682825&return=pdf
http://dx.doi.org/10.1080/01630563.2010.485296
http://dx.doi.org/10.1080/01630563.2010.485296
http://www.ams.org/mathscinet-getitem?mr=MR2761607&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2652546&return=pdf
http://dx.doi.org/10.3934/jimo.2010.6.465
http://dx.doi.org/10.3934/jimo.2010.6.465
http://www.ams.org/mathscinet-getitem?mr=MR1694524&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2159474&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2738588&return=pdf
http://dx.doi.org/10.1080/02331930902878358
http://dx.doi.org/10.1080/02331930902878358
http://www.ams.org/mathscinet-getitem?mr=MR1770522&return=pdf
http://dx.doi.org/10.1023/A:1008370910807
http://dx.doi.org/10.1023/A:1008370910807
http://www.ams.org/mathscinet-getitem?mr=MR2263177&return=pdf
http://dx.doi.org/10.1007/s10898-006-9020-5
http://dx.doi.org/10.1007/s10898-006-9020-5
http://www.ams.org/mathscinet-getitem?mr=MR0512151&return=pdf


EXISTENCE OF SOLUTIONS AND α-WELL-POSEDNESS FOR SCVI 581

[21] R. Lucchetti and F. Patrone, A characterization of Tykhonov well-posedness for minimimum
problems with applications to variational inequalities, Numer. Funct. Anal. Optim., 3 (1981),

461–476.

[22] P. E. Mainge, New approach to solving a system of variational inequalities and hierarchical
problems, J. Optim. Theory Appl., 138 (2008), 459–477.

[23] A. Moudafi and M. A. Noor, Penalty method for a system of constrained variational inequal-
ities, Optim. Lett., 6 (2012), 451–458.

[24] M. A. Noor and K. I. Noor, Projection algorithms for solving a system of general variational

inequalities, Nonlinear Anal., 70 (2009), 2700–2706.
[25] D. Pascali and S. Sburlan, “Nonlinear Mappings of Monotone Type,” Martinus Nijhoff, The

Hague, 1978.

[26] J. W. Peng and S. Y. Wu, The generalized Tykhonov well-posedness for system of vector
quasi-equilibrium problems, Optim. Lett., 4 (2010), 501–512.

[27] J. W. Peng and J. Tang, α-well-posedness for mixed quasi-variational-like inequality problems,

Abstr. Appl. Anal., 2011 (2011), 1–17.
[28] G. Stampacchia, Forms bilineaires coercivities sur les ensembles convexes, CR Acad. Sci.

Paris, 258 (1964), 4413–4416.

[29] Y. Tang and L. W. Liu, The penalty method for a new system of generalized variational
inequalities, Int. J. Math. Math. Sci., 2010 (2010), 1–8.

[30] A. N. Tykhonov, On the stability of the functional optimization problem, USSR J. Comput.
Math. Math. Phys., 6 (1966), 631–634.

[31] Y. X. Yuan, Recent advances in numerical methods for nonlinear equations and nonlinear

least squares, Numer. Algebra Control Optim., 1 (2011), 15–34.
[32] R. Y. Zhong and N. J. Huang, Strict feasibility for generalized mixed variational inequality

in reflexive Banach spaces, Numer. Algebra Control Optim., 1 (2011), 261–274.

Received September 2011; 1st revision January 2013; final revision April 2013.

E-mail address: J.W.Chen713@163.com

E-mail address: zpwan-whu@126.com

E-mail address: yangly0601@126.com

http://www.ams.org/mathscinet-getitem?mr=MR2429692&return=pdf
http://dx.doi.org/10.1007/s10957-008-9433-z
http://dx.doi.org/10.1007/s10957-008-9433-z
http://www.ams.org/mathscinet-getitem?mr=MR2891683&return=pdf
http://dx.doi.org/10.1007/s11590-010-0271-1
http://dx.doi.org/10.1007/s11590-010-0271-1
http://www.ams.org/mathscinet-getitem?mr=MR2499737&return=pdf
http://dx.doi.org/10.1016/j.na.2008.03.057
http://dx.doi.org/10.1016/j.na.2008.03.057
http://www.ams.org/mathscinet-getitem?mr=MR2719900&return=pdf
http://dx.doi.org/10.1007/s11590-010-0179-9
http://dx.doi.org/10.1007/s11590-010-0179-9
http://www.ams.org/mathscinet-getitem?mr=MR2802828&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2606901&return=pdf
http://dx.doi.org/10.1155/2010/614276
http://dx.doi.org/10.1155/2010/614276
http://www.ams.org/mathscinet-getitem?mr=MR2806290&return=pdf
http://dx.doi.org/10.3934/naco.2011.1.15
http://dx.doi.org/10.3934/naco.2011.1.15
http://www.ams.org/mathscinet-getitem?mr=MR2805930&return=pdf
http://dx.doi.org/10.3934/naco.2011.1.261
http://dx.doi.org/10.3934/naco.2011.1.261
mailto:J.W.Chen713@163.com
mailto:zpwan-whu@126.com
mailto:yangly0601@126.com

	1. Introduction
	2. Preliminaries
	3.  Existence of solutions for (SCVI)
	4.  Characterizations of -well-posedness for (SCVI)
	Acknowledgments
	REFERENCES

