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Abstract In this paper, we present an exact penalty method, which is different from
the existing penalty method, for solving weak linear bilevel programming problem.
Then, we establish an existence result of solutions for such a problem. Finally, we
propose an algorithm and give two examples to illustrate its feasibility.
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1 Introduction

In this paper, we consider the following weak linear bilevel programming problem:

min
x∈X

sup
y∈Ψ (x)

cT
1 x + dT

1 y, (1)

where Ψ (x) is the set of solutions of the lower level problem,
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min
y≥0

dT
2 y

s.t. Ax + By ≤ b.
(2)

Here, x, c1 ∈ Rn, y, d1, d2 ∈ Rm, A ∈ Rq×n, B ∈ Rq×m, b ∈ Rq , X is a closed subset
of Rn and T stands for transpose.

Remark 1 In the definition of the objective function of problem (2), we have ignored
a term of the form cT

2 x, since for a given x, cT
2 x is a constant.

Problem (1) is also called pessimistic formulation or weak linear Stackelberg prob-
lem. If the solution of the lower level problem is not unique, i.e. for at least x ∈ X, the
set Ψ (x) contains of more than one point, it is rational that the leader provides him-
self/herself against the possible worst choice of the follower in Ψ (x). Several papers
have been devoted to weak bilevel programming problem from different subjects, for
example, optimality conditions [11, 14], existence of solutions [1–3, 17], regulariza-
tion [18], approximation [19, 21], and so on. The reader can also be referred to at least
two monographs [7, 12] and the annotated bibliography [10, 13, 22, 23] on bilevel
programming problem.

It is worthwhile noting that, Aboussoror and Mansouri [2] presented an exact
penalty method for weak linear bilevel programming problem. Unfortunately, no nu-
merical results were reported. In this paper, we develop a new variant of the penalty
method of [2], for solving weak linear bilevel programming problem. The proposed
penalty method, which is inspired from [2, 5, 8, 24], is also exact. Moreover, we give
theoretical results on the existence of solution. Finally, we develop an algorithm and
give some numerical experiments.

The organization of the paper is as follows. In Sect. 2, we propose a penalty
method and establish theoretical results on the existence of solution in Sect. 3. In
Sect. 4, an algorithm is proposed, and then two examples are given to illustrate its
feasibility. Finally, we finish with a conclusion section.

2 Penalty method

In order to establish theoretical results, we state the main assumptions throughout the
paper.

Assumptions

(A1) For any x ∈ X, Y(x) = {y ∈ Rm | By ≤ b − Ax, y ≥ 0} �= ∅, and there exists a
compact subset Z of Rm such that Y(x) ⊂ Z for all x ∈ X.

(A2) The set X is a bounded polyhedron.

For each x ∈ X, it follows from assumption (A1) and Theorem 3.1 in [12] that
v(x) = supy∈Ψ (x) d

T
1 y is attained. Then, problem (1) can also be written as:

min
x∈X

[
cT

1 x + v(x)
]
. (3)
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Denote the optimal value of problem (2) by ϕ(x). Then,

Ψ (x) = {
y ∈ Y(x)

∣∣ dT
2 y = ϕ(x)

}
.

Now, we consider the penalized problem of (3) by the penalty parameter k:

min
x∈X

{
cT

1 x + max
y∈Y(x)

[
dT

1 y + k
(
ϕ(x) − dT

2 y
)]}

, (4)

which is also rewritten as:

min
x∈X

{
cT

1 x + kϕ(x) + max
y∈Y(x)

[
dT

1 y − kdT
2 y

]}
.

For each x ∈ X, the dual of the following problem

max
y∈Y(x)

[
dT

1 y − kdT
2 y

]
(5)

can be written as:

min
u≥0

(b − Ax)T u

s.t. −BT u ≤ kd2 − d1.
(6)

Note that, for any x ∈ X, it follows from (A1) that problem (5) has at least one
solution. Then, problem (6) also has a solution, and these two problems have the
common optimal value. Hence, problem (4) is equivalent to the following problem:

min
x∈X

[
cT

1 x + kϕ(x) + ψ(x)
]
, (7)

where ψ(x) is the optimal value of problem (6).
For k > 0, define the following function:

vk(x) = kϕ(x) + max
y∈Y(x)

[
dT

1 y − kdT
2 y

]
. (8)

It follows from the definition of ψ(x) that vk(x) = kϕ(x) + ψ(x). Then, problems
(4) and (7) are equivalent to the following problem:

min
x∈X

[
cT

1 x + vk(x)
]
. (9)

For the sake of simplicity, we denote

S = {
(x, y)

∣∣ x ∈ X, y ∈ Y(x)
}
,

Uk = {
u

∣∣ −BT u ≤ kd2 − d1, u ≥ 0
}
.

Now, we consider the following problem:

min
x,y,u

[
cT

1 x + kdT
2 y + (b − Ax)T u

]

s.t. (x, y) ∈ S,

u ∈ Uk.

(10)

Then, we have the following result which shows the relations between (9) and (10).
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Lemma 1 For a fixed value of k, if (x̄, ȳ, ū) is a solution of problem (10), then x̄ is a
solution of problem (9). Furthermore, ϕ(x̄) = dT

2 ȳ and ψ(x̄) = (b − Ax̄)T ū.

Proof Suppose that x̃ solves problem (9). Then, there exist ỹ ∈ Y(x̃) and ũ ∈ Uk such
that ϕ(x̃) = dT

2 ỹ and ψ(x̃) = (b − Ax̃)T ũ. Thus, it follows that (x̃, ỹ, ũ) is a feasible
point of problem (10).

Since (x̄, ȳ, ū) is a solution of problem (10), we have

cT
1 x̄ + kdT

2 ȳ + (b − Ax̄)T ū ≤ cT
1 x̃ + kdT

2 ỹ + (b − Ax̃)T ũ,

which implies that,

cT
1 x̄ + kdT

2 ȳ + (b − Ax̄)T ū ≤ cT
1 x̃ + kϕ(x̃) + ψ(x̃). (11)

On the other hand, it follows from dT
2 ȳ ≥ ϕ(x̄) and (b − Ax̄)T ū ≥ ψ(x̄) that

cT
1 x̄ + kdT

2 ȳ + (b − Ax̄)T ū ≥ cT
1 x̄ + kϕ(x̄) + ψ(x̄). (12)

Combining (11) and (12), then we have

cT
1 x̄ + vk(x̄) = cT

1 x̄ + kϕ(x̄) + ψ(x̄) ≤ cT
1 x̃ + kϕ(x̃) + ψ(x̃) = cT

1 x̃ + vk(x̃),

which implies that, x̄ is a solution of problem (9).
Replacing x̃ of the right part of (11) with x̄, we can easily obtain that ϕ(x̄) = dT

2 ȳ

and ψ(x̄) = (b − Ax̄)T ū. This completes the proof. �

3 Main results

Denote by V (·) the set of vertices of the set to be concerned. For a fixed value of k,
define the following function:

θk(u) = inf
(x,y)∈S

[
cT

1 x + kdT
2 y + (b − Ax)T u

]
.

Then, we have the following result.

Theorem 1 If assumptions (A1) and (A2) are satisfied,

min
u∈Uk

θk(u) (13)

has at least one solution in V (Uk).

Proof It is easy to verify that θ(·) is a concave function. Then,

inf
u∈Uk

θk(u) = inf
x∈X

inf
y∈Y(x),
u∈Uk

[
cT

1 x + kdT
2 y + (b − Ax)T u

]

≥ inf
x∈X

{
cT

1 x + kϕ(x) + sup
y∈Y(x)

[
dT

1 y − kdT
2 y

]}

≥ inf
x∈X

[
cT

1 x + dT
1 y + k

(
ϕ(x) − dT

2 y
)]

,

for any y ∈ Y(x).
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In particular, for any x ∈ X, if ỹ(x) solves problem (2), we have ϕ(x) −
dT

2 ỹ(x) = 0, and then

inf
u∈Uk

θk(u) ≥ inf
x∈X

[
cT

1 x + dT
1 ỹ(x)

] ≥ inf
(x,y)∈S

[
cT

1 x + dT
1 y

] = min
(x,y)∈S

[
cT

1 x + dT
1 y

]
.

Therefore, it follows from (A1) and (A2) that the function θk(u) is bounded from
below. Using Corollary 32.3.4 of Rockafellar [20], we deduce that problem (13) has
at least one solution in V (Uk). This completes the proof. �

On the solution of the penalized problem (12), we can obtain the following result.

Theorem 2 Under assumptions (A1) and (A2), problem (10) has at least one solu-
tion.

Proof It follows from Theorem 1 that problem (13) has a solution u∗ ∈ V (Uk). Then,
under assumptions (A1) and (A2), the following linear programming problem

min
(x,y)∈S

[
cT

1 x + kdT
2 y + (b − Ax)T u∗]

has at least one solution (x∗, y∗) ∈ V (S). Hence, (x∗, y∗, u∗) is a solution of (10). �

Theorem 3 Let assumptions (A1) and (A2) be satisfied. For any x ∈ X, there exists
k∗ > 0 such that vk(x) = v(x) for all k > k∗.

Proof For each x ∈ X, it is clear that the solution of the linear programming prob-
lem (5) is attained at V (Y (x)). Then, if any y ∈ V (Y (x)) satisfies y ∈ Ψ (x), we have
vk(x) = v(x).

Without loss of generality, we can assume that, for at least x ∈ X, the set

D(x) = {
y ∈ V

(
Y(x)

) ∣∣ ϕ(x) − dT
2 y < 0

}

is not empty. Then, consider the following problems:

g1 = max
x∈X,y∈D(x)

[
ϕ(x) − dT

2 y
]

and

g2(x) = max
y∈Y(x)

dT
1 y.

Now, let k∗(x) = − g2(x)−vk(x)
g1

. Then, k∗(x) > 0. For any x ∈ X and k > k∗(x),
we have

max
y∈D(x)

{
dT

1 y + k
[
ϕ(x) − dT

2 y
]}

< max
y∈D(x)

{
dT

1 y + k∗(x)
[
ϕ(x) − dT

2 y
]}

≤ max
y∈Y(x)

dT
1 y + k∗(x) max

y∈D(x)

[
ϕ(x) − dT

2 y
]

≤ g2(x) + k∗(x) · g1

= vk(x),
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which implies that, for any x ∈ X and k > k∗(x), vk(x) must be attained at y ∈ {y ∈
V (Y (x)) | ϕ(x) = dT

2 y}, i.e. y ∈ Ψ (x), and then vk(x) = v(x).
Moreover, it follows from the definitions of vk(x) and g2(x) that they are continu-

ous, and then k∗(x) is also continuous over the bounded polyhedron X. Hence, there
exists k∗ > 0, i.e. k∗ = maxx∈X k∗(x), such that vk(x) = v(x) for all k > k∗. �

Theorem 4 Let assumptions (A1) and (A2) be satisfied, and {(xk, yk, uk)} be a se-
quence of solutions of problem (10). Then, for all k > k∗, which is defined in Theo-
rem 3, xk is a solution of problem (3).

Proof It follows from Lemma 1 that xk is a solution of problem (9). Then,

cT
1 xk + vk(xk) ≤ cT

1 x + vk(x), ∀x ∈ X.

For all k > k∗, it follows from Theorem 3 and the above inequality that

cT
1 xk + v(xk) ≤ cT

1 x + v(x), ∀x ∈ X,

which implies that, for all k > k∗, xk is also a solution of problem (3). �

4 The algorithm and numerical experiment

According to the results in Sect. 3, we can propose a simple algorithm for solving
problem (3) as follows.

Algorithm 1

Step 0. Choose k > 0, λ > 0 and set i = 1.
Step 1. Solve problem (10), and denote its solution by (xi, yi, ui).
Step 2. For x = xi , solve the following problem:

max
y∈Y(x)

[
dT

1 y − kdT
2 y

]
,

and denote its solution by yi∗.
Step 3. If dT

2 yi = dT
2 yi∗, then xi is a solution of problem (3), stop. Otherwise, set

k = k + λ, i = i + 1 and go to step 1.

Remark 2 Obviously, solving problem (10), which is a disjoint bilinear program-
ming problem [15], is the main compute tasks of the above algorithm. Fortunately,
however, many authors proposed algorithms to solve such a problem, for example,
see [4, 6, 16].

Remark 3 It follows from Lemma 1 that ϕ(xi) = dT
2 yi , and from step 3 of the above

algorithm that vk(x
i) = kϕ(xi) + dT

1 yi∗ − kdT
2 yi∗. Furthermore, if dT

2 yi = dT
2 yi∗,

then yi∗ ∈ Ψ (xi). Hence, we have vk(x
i) = v(xi), and xi is a solution of problem (3)

by using Theorem 4.

To illustrate the feasibility of the proposed algorithm, we consider the following
examples which are adapted from [9].
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Table 1 Numerical results of Algorithms 1 and 2

Example Algorithm 1 Algorithm 2

(x∗, y∗)T f (x∗, y∗) (x∗, y∗)T f (x∗, y∗)

1 (0,10,0,10)T −90 (0,10,0,10)T −90

2 (10,0,0,0,0,0)T −80 (10,0,0,0,0,0)T −80

Example 1

min
x∈X

max
y∈Ψ (x)

−8x1 − 10x2 − 2y1 + y2,

where X = {x | x = (x1, x2)
T , x1 + x2 ≤ 10, x1, x2 ≥ 0}, and Ψ (x) is the set of

solutions of the lower level problem,

min
y

−y1 − y2

s.t. y1 + y2 ≤ 20 + x1 − x2,

y = (y1, y2)
T ≥ 0.

Example 2

min
x∈X

max
y∈Ψ (x)

−8x1 − 6x2 − 25y1 − 30y2 + 2y3 + 16y4,

where X = {x | x = (x1, x2)
T , x1 + x2 ≤ 10, x1, x2 ≥ 0}, and Ψ (x) is the set of

solutions of the lower level problem,

min
y

−10y1 − 10y2 − 10y3 − 10y4

s.t. y1 + y2 + y3 + y4 ≤ 10 − x1 − x2,

−y1 + y4 ≤ 0.8x1 + 0.8x2,

y2 + y4 ≤ 4x2,

y = (y1, y2, y3, y4)
T ≥ 0.

In our experiment, we first choose k = 10, λ = 10, and then use the algorithm
proposed by Alarie et al. [4] to solve disjoint bilinear programming problem (10).
The numerical results are reported in Table 1 where (x∗, y∗)T and f (x∗, y∗) denote
the solution and the optimal value, respectively. Moreover, for comparison purposes,
results of the penalty method in [2], which is denoted by Algorithm 2, are given in
Table 1 as well. As shown in Table 1, the results obtained by Algorithm 1 is the same
as that of Algorithm 2.

Now, to better illustrate our algorithm, we consider Example 1, and present the
steps in solving this example as follows.

Iteration 1

Step 0: Let k = 10 and λ = 10.
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Step 1: Using (10), we can get the penalty problem of Example 1 as follows:

min
x,y,u

−8x1 − 10x2 + 10(−y1 − y2) + (20 + x1 − x2)u

s.t. x1 + x2 ≤ 10,

y1 + y2 ≤ 20 + x1 − x2,

−u ≤ −8,

−u ≤ −11,

x, y,u ≥ 0,

and obtain its solution (x1, y1, u1)T = (0,10,5,5,11)T .
Step 2: Solve the following linear programming problem:

max
y∈Y(x1)

−2y1 + y2 + 10(y1 + y2),

and get its solution y1∗ = (0,10)T .
Step 3: (x1, y1∗)T = (0,10,0,10)T is a solution of this example because of dT

2 y1 =
dT

2 y1∗ = −10.

5 Conclusion

In this paper, we consider the weak linear bilevel programming problem where the
solution of the lower level problem is not unique. We then present a simple algo-
rithm based on an exact penalty method, which is different from the existing penalty
method, for such problems. Finally, two numerical examples illustrate its feasibility.
It is interesting and useful to transfer this method to weak nonlinear bilevel program-
ming problem in our future research.
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