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Abstract In this article, we investigate a nonsmooth multiobjective optimization problem
(MOP) under generalized invexity. First, the Kuhn–Tucker type optimality conditions for
MOP are obtained. Furthermore, the relationships between weakly efficient solutions of
MOP and vector valued saddle points of its Lagrange function are established. Last but not
the least, the relations between weakly efficient solutions of MOP and solutions of Hartman–
Stampacchia weak vector quasi-variational inequalities and Hartman–Stampacchia nonlinear
weak vector quasi-variational inequalities are also derived under some suitable assumptions.
These results extend and improve some known results in the literature.
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1 Introduction

The weak minimum (weakly efficient, weak Pareto) solution is an important concept in
mathematical models, economics, decision theory, optimal control, and game theory (see,
for example, Chen 1992; Chen et al. 2005, 2011; Chen and Wan 2011; Craven 1995; Wan
et al. 2011, etc.). In most works, an assumption of convexity was made for the objective
functions. Very recently, some generalized convexity has received more attention (see, for
example, Chen et al. 2011; Clarke 1983; Kim 2006; Lee et al. 1996; Luc 1989; Mishra and
Wang 2006; Suneja et al. 2008, etc.). A significant generalization of convex functions is invex
function introduced first by Hanson (1981), which has greatly been applied in nonlinear opti-
mization and other branches of pure and applied sciences. Craven and Yang (1991) presented
generalized cone-invex functions and established a generalized alternative theorem involv-
ing nonsmooth functions. Suneja et al. (2008) by introducing the notion of Q-nonsmooth
pseudoinvexity, Suneja, Khurana and Vani established some necessary and sufficient opti-
mality conditions for MOP involving Clarke’s generalized gradient. Very recently, Chen et
al. (2011), studied the optimality conditions for a class of MOP involving cone-invexity, pro-
posed a modified objective function method to solve the MOP, and applied to multiobjective
fractional programming problems. Mishra and Wang (2006) established the relationships
between the solutions of vector variational-like inequalities and (weakly) efficient solutions
of nonsmooth vector optimization problems involving differentiable functions. Wu et al.
(2011) also explored the MOP, and the equivalence of weakly efficient solutions, the critical
points for the MOP, and solutions for vector variational-like inequalities were established
under some suitable conditions. Nonemptiness and compactness of the solutions set for the
MOP were proved by using the FKKM lemma (see Appendix) and a fixed point theorem.

Inspired and motivated by aforementioned works, the purpose of this paper was to inves-
tigate a nonsmooth multiobjective optimization problems involving generalized cone-invex
functions with cone constraints. The Kuhn–Tucker type optimality conditions for MOP are
obtained. Furthermore, the relationships between weakly efficient solutions of MOP and
vector-valued saddle points of its Lagrange function are established. The relations between
weakly efficient solutions of MOP and solutions of Hartman–Stampacchia weak vector
quasi-variational inequalities (HSVQI) and Hartman–Stampacchia nonlinear weak vector
quasi-variational inequalities (HSNVQI) are also derived under some suitable assumptions,
which is distinct from Garzon et al. (2004), Guu and Li (2009), Lee et al. (1996), Li and Li
(2008), Mishra and Wang (2006). These results extend and improve corresponding results of
Chen et al. (2011), Guu and Li (2009), Lee et al. (1996), Li and Li (2008), Mishra and Wang
(2006) to nonsmooth case.

2 Preliminaries

Let Rn be the n-dimensional Euclidean space and Rn+ = {x = (x1, . . . , xn)T : xl ≥ 0, l =
1, . . . , n}, where the superscript T denotes the transpose. A nonempty subset C of topological
vector space X is called a cone if tC ⊂ C for all t > 0; C is called a convex cone if C is a
cone and C + C ⊂ C ; C is called a pointed cone if C is a cone and C

⋂
(−C) = {0}.

Throughout this paper, without other specifications, let Q ⊂ Rk and S ⊂ Rm be closed
convex cones with nonempty interior. Let η : Rn × Rn → Rn with η(x, x0) �= 0 for some
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x �= x0. Let f = ( f1, . . . , fk)
T : Rn → Rk, g = (g1, . . . , gm)T : Rn → Rm and let

e = (1, 1, . . . , 1)T ∈ Rk , where fi and g j are locally Lipschitz, i ∈ {1, 2, . . . , k} and
j ∈ {1, 2, . . . , m}. The dual cone of K ⊂ Rn is denoted by

K ∗ = {u ∈ Rn : xTu ≥ 0, ∀x ∈ K }.
The MOP is defined as follows:

min f (x)

subject to − g(x) ∈ S.

Denote the feasible set of MOP by F = {x ∈ Rn : −g(x) ∈ S}.
We first recall some definitions and lemmas which are needed in our main results.

Definition 2.1 A point x0 ∈ F is called a weakly efficient (weak minimum) solution of MOP
if

f (x) − f (x0) �∈ −intQ, ∀x ∈ F.

Denote by Fw the weakly efficient solutions set of MOP.

Definition 2.2 Clarke (1983) A real-valued function � : Rn → R is said to be locally
Lipschitz if, for any z ∈ Rn , there exist a positive constant κ and a neighborhood N of z such
that, for any x, y ∈ N , |�(x) − �(y)| ≤ κ‖x − y‖, where ‖ · ‖ denotes any norm in Rn .

In Clarke (1983), the Clarke’s generalized subgradient of � at z is denoted by

∂�(z) = {ξ ∈ Rn : �◦(z; d) ≥ ξTd, ∀d ∈ Rn},
where �◦(z; d) = lim supy→z,t→0

�(y+td)−�(y)
t .

Clearly, �◦(z; d) = max{ξ T d : ξ ∈ ∂�(z)}.
Definition 2.3 Let p : Rn → Rk . The generalized subgradient of p at z ∈ Rn is the set

∂p(z) = {(ζ1, . . . , ζk)
T : ζi ∈ ∂pi (z), i = 1, . . . , k},

where ∂pi (z) is the Clarke’s generalized subgradient of pi (i ∈ {1, . . . , k}) at z ∈ Rn .

Definition 2.4 Craven and Yang (1991) (1) f is said to be generalized Q-invex at z ∈ Rn

if there exists η : Rn × Rn → Rn such that, for all x ∈ Rn and ζ ∈ ∂ f (z),

f (x) − f (z) − ζη(x, z) ∈ Q.

(2) f is said to be generalized Q-pseudoinvex at z ∈ Rn if there exists η : Rn × Rn → Rn

such that, for all x ∈ Rn and ζ ∈ ∂ f (z),

f (x) − f (z) ∈ −intQ ⇒ ζη(x, z) ∈ −intQ.

(3) f is said to be generalized Q-(pseudo)invex with respect to η if it is generalized
Q-(pseudo)invex at any point z ∈ Rn with respect to η.

Example 2.1 Let Rn = R, Rk = R2 and Q = −R2+. Assume that f (x) := (−|x |, 1)T for
all x ∈ R. We define the function η : R × R → R as follows:

η(x, y) =
⎧
⎨

⎩

|x | − y, if y > 0,
|x |
4 , if y = 0,

−|x | − y, if y < 0.
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After computation, we know that f is generalized Q-invex at any point y ∈ R with respect
to the η.

Remark 2.5 f is generalized Q-invex and g is generalized S-invex with respect to the same
η : Rn × Rn → Rn if and only if ( f, g) is generalized (Q, S)-invex with respect to η :
Rn × Rn → Rn .

Remark 2.6 Suneja et al. (2008) defined the following pseudoinvexity: f is said to be Q-
nonsmooth pseudoinvex at z ∈ Rn if there exists η : Rn × Rn → Rn such that, for all
x ∈ Rn ,

f (x) − f (z) ∈ −intQ ⇒ f ◦(z; η(x, z)) ∈ −intQ,

where f ◦(z; η(x, z)) = ( f ◦
1 (z; η(x, z)), . . . , f ◦

k (z; η(x, z)))T and

f ◦
i (z; η(x, z)) = max{ξTη(x, z) : ξ ∈ ∂ fi (z)}, i = 1, 2, . . . , k.

It is easy to see that, if Q = Rk+, then Q-nonsmooth pseudoinvexity implies generalized
Q-pseudoinvexity; if Q = −Rk+, then generalized Q-pseudoinvexity implies Q-nonsmooth
pseudoinvexity.

Definition 2.7 MOP is said to satisfy the linearly independent constraint qualification at
x ∈ Rn if, ξ1, ξ2, . . . , ξm are linearly independent for any ξi ∈ ∂gi (x), i ∈ {1, . . . , m}.
Definition 2.8 (1) ( f, g) is said to be KT-(Q, S)-pseudoinvex at y if there exists η : Rn ×
Rn → Rn such that, for all x ∈ Rn and x �= y,

f (x) − f (y) ∈ −intQ ⇒
{

ζη(x, y) ∈ −intQ, ∀ζ ∈ ∂ f (y),

ξη(x, y) ∈ −S, ∀ξ ∈ ∂g(y).

(2) ( f, g) is said to be KT-(Q, S)-pseudoinvex with respect to η if it is KT-(Q, S)-
pseudoinvex at each point z ∈ Rn with respect to η.

Clearly, if f and g are generalized Q-pseudoinvex and generalized S-pseudoinvex with
respect to η at y, then ( f, g) is KT-(Q, S)-pseudoinvex with respect to η at y. If f is
generalized Q-invex and g is generalized S-invex with respect to the same η : Rn ×Rn → Rn

at y, then ( f, g) also is KT-(Q, S)-pseudoinvex with respect to η at y.

Example 2.2 Let Rn = R, Rk = Rm = R2 and Q = S = R2+. Assume that f (x) :=
(−|x |, |x |)T and g(x) := (|x |,−|x |)T for all x ∈ R. By the Definition 2.2 and simple
computation, we can obtain that ( f, g) is KT-(Q, S)-pseudoinvex with respect to any function
η : R × R → R at any point y ∈ R.

Remark 2.9 If f and g are differentiable on F , then the generalized Q-invexity reduces to
the Q-invexity Chen et al. (2011), Li and Li (2008). Moreover, if Q = Rk+ and S = Rm+ ,
then the KT-(Q, S)-pseudoinvexity reduces to the KT-pseudoinvexity (Arana-Jiménez et al.
2008).

Lemma 2.10 Clarke (1983) If pi : Rn → R(i ∈ {1, . . . , k}) are locally Lipschitz, then the
following statements are true:

(1) ∂(�k
i=1 pi )(z) ⊂ �k

i=1∂pi (z) for all z ∈ Rn;
(2) ∂(�k

i=1ti pi )(z) ⊂ �k
i=1ti∂pi (z) for all z ∈ Rn, where t = (t1, . . . , tk)T ∈ Rk.
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Lemma 2.11 Craven (1995) Let 	 ⊂ Rk be a convex cone with int	 �= ∅ and 	∗ the dual
cone of 	. Then the following statements are true:

(1) If u ∈ int	, then xTu > 0 for all x ∈ 	∗\{0};
(2) If x ∈ int	∗, then xTu > 0 for all u ∈ 	\{0}.

Lemma 2.12 Chen et al. (2011), Craven (1995) Let K be a convex cone of topological vector
space X with intK �= ∅. Then, for any x, y ∈ X, the following statements are true:

(1) y − x ∈ K and y ∈ −K imply x ∈ −K ;
(2) y − x ∈ K and y ∈ −int K imply x ∈ −int K ;
(3) y − x ∈ K and x �∈ −int K imply y �∈ −int K .

3 Optimality conditions for MOP

In this section, we investigate the Kuhn–Tucker type necessary and sufficient optimality
conditions for MOP under some suitable conditions.

Theorem 3.1 Suneja et al. (2008) (Kuhn–Tucker type necessary optimality condition) Sup-
pose that f is generalized Q-invex and g is generalized S-invex with respect to the same
η : Rn × Rn → Rn at x̄ ∈ F and some constraint qualifications are satisfied at x̄ ∈ Fw.
Then there exist λ ∈ Q∗\{0} and μ ∈ S∗ such that

0 ∈ ∂ f (x̄)Tλ + ∂g(x̄)Tμ, μTg(x̄) = 0,

where ∂ f (x̄)T = {ζT : ζ ∈ ∂ f (x̄)}.
Proof For the proof of this theorem, the reader could refer to Suneja et al. (2008). This
completes the proof. ��
Theorem 3.2 (Kuhn–Tucker type sufficient optimality condition) Let ( f, g) be KT-(Q, S)-
pseudoinvex with respect to the same η : Rn × Rn → Rn at x̄ ∈ F. Assume that there exist
λ ∈ Q∗\{0} and μ ∈ S∗ such that

0 ∈ ∂ f (x̄)Tλ + ∂g(x̄)Tμ, μTg(x̄) = 0. (1)

Then x̄ ∈ Fw.

Proof Let x̄ ∈ F . Suppose to the contrary that x̄ �∈ Fw . Then there exists x̂ ∈ F such that

f (x̂) − f (x̄) ∈ −intQ.

By the KT-(Q, S)-pseudoinvexity of ( f, g) with respect to η at x̄ ∈ F , we get

ζη(x̂, x̄) ∈ −intQ, ξη(x̂, x̄) ∈ −S, ∀ζ ∈ ∂ f (x̄), ξ ∈ ∂g(x̄).

Moreover, one has

(λTζ + μTξ)η(x̂, x̄) < 0, ∀ζ ∈ ∂ f (x̄), ξ ∈ ∂g(x̄).

which contradicts (1). Therefore, x̄ ∈ Fw . This completes the proof. ��
Remark 3.3 The KT-(Q, S)-pseudoinvexity with respect to the same η : Rn × Rn → Rn

at x̄ ∈ F of ( f, g) can be replaced by the generalized Q-invexity of f and generalized
S-invexity of g with respect to the same η at x̄ .
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Now, we give an example to illustrate the obtained results.

Example 3.1 Let Rn = Rk = Rm = R2 and Q = S = [0,+∞) × (−∞, 0]. Let f : Rn →
Rk and g : Rn → Rm . We consider the following problem MOP:

min f (x) := (2x1,−3x2
2 )T

subject to g(x) := (x2
1 + 4x1 − 5,−x2)

T ∈ −S.

Simple computation allows that the feasible solutions set

F = {(x1, x2)
T ∈ R2 : −5 ≤ x1 ≤ 1, x2 ≤ 0}

and the weakly efficient solutions set Fw = {(x1, x2)
T : x1 = −5 or x2 = 0}. One can

easily verify that f and g are generalized Q−invex and generalized S−invex with respect to
η(x, x̄) := (2x2 x̄2(x1 − x̄1), x2 − π x1x2−x̄2)T at x̄ , respectively, and the linearly independent
constraint qualifications hold at x̄ , where x = (x1, x2)

T and x̄ = (−5, 0)T. Clearly, there
exist λ̄ = (3, 0)T ∈ Q∗ and μ̄ = (1, 0)T ∈ S∗ such that 0 ∈ ∂ f (x̄)Tλ̄ + ∂g(x̄)Tμ̄ and
μ̄Tg(x̄) = 0.

4 Relationship between vector-valued saddle points and weakly efficient solutions
for MOP

In this section, let Q = Rk+. We develop the relationship between vector-valued saddle points
and weakly efficient solutions for MOP under some suitable assumptions. We now propose
the Lagrange function for MOP:

L(x, μ) = (L1(x, μ), . . . , Lk(x, μ)) = f (x) + μTg(x)e, ∀x ∈ F, μ ∈ S∗,

where Li (x, μ) = fi (x) + μTg(x), i ∈ {1, 2, . . . , k} and e = (1, 1, . . . , 1)T ∈ Rk .

Definition 4.1 A point (x̄, μ̄) ∈ F×S∗ is called a vector valued saddle point of the Lagrange
function L(x, μ) if

(1) L(x̄, μ) − L(x̄, μ̄) �∈ intQ for all μ ∈ S∗;
(2) L(x, μ̄) − L(x̄, μ̄) �∈ −intQ for all x ∈ F .

Theorem 4.2 Let (x̄, μ̄) ∈ F ×S∗ be a vector valued saddle point of L(x, μ). Then x̄ ∈ Fw.

Proof Let (x̄, μ̄) ∈ F × S∗ be a vector-valued saddle point of L(x, μ). Therefore, from
Definition 4.1, there exists i ∈ {1, 2, . . . , k} such that

Li (x̄, μ) − Li (x̄, μ̄) ≤ 0, ∀μ ∈ S∗.

Moreover, one has

μTg(x̄) − μ̄Tg(x̄) ≤ 0, ∀μ ∈ S∗,

which implies that μ̄Tg(x̄) = 0.
Suppose to the contrary that x̄ �∈ Fw . Then there exists x0 ∈ F such that

f (x0) − f (x̄) ∈ −intQ. (2)

Since μ̄Tg(x0) ≤ 0, it follows from (2) that

f (x0) + μ̄Tg(x0) − f (x̄) − μ̄Tg(x̄) ∈ −intQ,

which contradicts Definition 4.1. This completes the proof. ��
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Theorem 4.3 Suppose that f is generalized Q-invex and g is generalized S-invex with
respect to the same η : Rn × Rn → Rn at x̄ ∈ F and some constraint qualifications are
satisfied at x̄ . Then there exists μ̄ ∈ S∗ such that (x̄, μ̄) is a vector-valued saddle point for
L(x, μ).

Proof Let x̄ ∈ Fw . By Theorem 3.1, there exist λ̄ ∈ Q∗\{0} and μ̄ ∈ S∗ such that

0 ∈ ∂ f (x̄)Tλ̄ + ∂g(x̄)Tμ̄, μ̄Tg(x̄) = 0. (3)

Since μTg(x̄) ≤ 0 for all μ ∈ S∗, we have

L(x̄, μ) − L(x̄, μ̄) = μTg(x̄)e − μ̄Tg(x̄)e

= μTg(x̄)e �∈ intQ.

Suppose to the contrary that (x̄, μ̄) is not vector-valued saddle point of L(x, μ). Then
there exists x0 ∈ F such that

L(x0, μ̄) − L(x̄, μ̄) = f (x0) + μ̄Tg(x0)e − f (x̄) − μ̄Tg(x̄)e

∈ −intQ.

Without loss of generality, let λ̄ = (λ̄1, λ̄2, . . . , λ̄k)
T with

∑k
i=1 λ̄i = 1. Then we have

λ̄T f (x0) − λ̄T f (x̄) + μ̄Tg(x0) − μ̄Tg(x̄) < 0. (4)

Since f is generalized Q-invex and g is generalized S-invex with respect to the same η :
Rn × Rn → Rn at x̄ , one has

f (x0) − f (x̄) − ζη(x0, x̄) ∈ Q, ∀ζ ∈ ∂ f (x̄),

and so

g(x0) − g(x̄) − ξη(x0, x̄) ∈ S, ∀ξ ∈ ∂g(x̄).

Moreover, we have

λ̄T f (x0) − λ̄T f (x̄) − λ̄Tζη(x0, x̄) ≥ 0, ∀ζ ∈ ∂ f (x̄),

and so

μ̄Tg(x0) − μ̄Tg(x̄) − μ̄Tξη(x0, x̄) ≥ 0, ∀ξ ∈ ∂g(x̄).

Therefore, it follows that

λ̄T f (x0) − λ̄T f (x̄) + μ̄Tg(x0) − μ̄Tg(x̄)

≥ (λ̄Tζ + μ̄Tξ)η(x0, x̄), ∀ζ ∈ ∂ f (x̄), ξ ∈ ∂g(x̄).

Thus it follows from (3) that

λ̄T f (x0) − λ̄T f (x̄) + μ̄Tg(x0) − μ̄Tg(x̄) ≥ 0,

which contradicts (4). This completes the proof. ��

Now, we apply Example 3.1 to illustrate Theorem 4.3.
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Example 4.1 We consider the MOP in Example 3.1. It is easy to see that the Lagrange
function

L(x, μ) = (μ1x2
1 + (4μ1 + 2)x1 − μ2x2 − 5μ1, μ1x2

1 − 3x2
2 + 4μ1x1 − μ2x2 − 5μ1)

T,

where x ∈ F = {(x1, x2)
T ∈ R2 : −5 ≤ x1 ≤ 1, x2 ≤ 0} and μ ∈ S∗. From Example 3.1,

the linearly independent constraint qualifications hold at x̄ = (−5, 0)T. One can easily check
that there exists μ̄ = (1, 0)T such that (x̄, μ̄) is a vector-valued saddle point for L(x, μ).

5 Weak vector quasi-variational inequalities

In this section, we consider the relationships among weakly efficient solutions of MOP, the
solutions of a class of HSVQI and that of HSNVQI under some suitable assumptions.

Let F be nonempty set. The HSVQI and HSNVQI are defined as follows:
HSVQI: find x̄ ∈ F such that there exists ζ̄ ∈ ∂ f (x̄) and

ζ̄ η(x, x̄) �∈ −intQ, ∀x ∈ F.

HSNVQI: find x̄ ∈ F such that there exists ζ̄ ∈ ∂ f (x̄) and

ζ̄ η(x, x̄) + f (x) − f (x̄) �∈ −intQ, ∀x ∈ F.

Denote the solutions sets of HSVQI and HSNVQI by SQ I and SN Q I , respectively.

Theorem 5.1 Let f be generalized Q-invex with respect to η : Rn × Rn → Rn at x̄ ∈ F.
Then x̄ ∈ SQ I or x̄ ∈ SN Q I implies that x̄ ∈ Fw.

Proof If x̄ ∈ SQ I . Suppose to the contrary that x̄ �∈ Fw. Then there exists x0 ∈ F such that

f (x0) − f (x̄) ∈ −intQ. (5)

By the generalized Q-invexity of f with respect to η at x̄ , one has

f (x0) − f (x̄) − ζη(x0, x̄) ∈ Q, ∀ζ ∈ ∂ f (x̄).

It follows from (5) that

ζη(x0, x̄) ∈ −intQ∀ζ ∈ ∂ f (x̄),

which contradicts x̄ ∈ SQ I .
If x̄ ∈ SN Q I , then there exists ζ̄ ∈ ∂ f (x̄) and

ζ̄ η(x, x̄) + f (x) − f (x̄) �∈ −intQ, ∀x ∈ F. (6)

Since f is generalized Q-invex with respect to η at x̄ , we get

f (x) − f (x̄) − ζη(x, x̄) ∈ Q, ∀ζ ∈ ∂ f (x̄).

Moreover, one has

2( f (x) − f (x̄)) − ( f (x) − f (x̄) + ζη(x, x̄)) ∈ Q, ∀ζ ∈ ∂ f (x̄).

Thus it follows from (6) that

f (x) − f (x̄) �∈ −intQ, ∀x ∈ F,

that is, x̄ ∈ Fw. This completes the proof. ��
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In the following, we show Theorem 5.1 by Example 3.1.

Example 5.1 We consider the MOP in Example 3.1. It follows from Example 3.1 that the
feasible solutions set F = {(x1, x2)

T ∈ R2 : −5 ≤ x1 ≤ 1, x2 ≤ 0} and f is generalized
Q−invex with respect to η(x, x̄), where η(x, x̄) := (2x2 x̄2(x1 − x̄1), x2 − π x1x2−x̄2)T at

x̄ = (−5, 0)T. Clearly, there exists ζ̄ =
[

2 0
0 0

]

∈ ∂ f (x̄) such that

ζ̄ η(x, x̄) =
[

2 0
0 0

] [
2x2 x̄2(x1 − x̄1)

x2 − π x1x2−x̄2

]

=
[

10 + 2x1

0

]

�∈ −intQ, ∀x ∈ F,

ζ̄ η(x, x̄) + f (x) − f (x̄) =
[

10 + 2x1

0

]

+
[

10 + 2x1

−3x2
2

]

=
[

20 + 4x1

−3x2
2

]

�∈ −intQ, ∀x ∈ F,

that is, x̄ ∈ SQ I and x̄ ∈ SN Q I . From Theorem 5.1, one has x̄ ∈ Fw . In fact,

f (x) − f (x̄) =
[

10 + 2x1

−3x2
2

]

�∈ −intQ, ∀x ∈ F.

Theorem 5.2 Let f be generalized (−Q)-invex with respect to η : Rn × Rn → Rn at
x̄ ∈ Fw . Then x̄ ∈ SQ I . Furthermore, assume that f is generalized Q-invex with respect to
η at x̄ . Then x̄ ∈ SN Q I .

Proof Let x̄ ∈ Fw . Then we have

f (x) − f (x̄) �∈ −intQ, ∀x ∈ F. (7)

Since f is generalized (−Q)-invex with respect to η at x̄ , we obtain

ζη(x, x̄) − ( f (x) − f (x̄)) ∈ Q, ∀ζ ∈ ∂ f (x̄).

Thus it follows from (7) that

ζη(x, x̄) �∈ −intQ, ∀ζ ∈ ∂ f (x̄), x ∈ F.

Moreover, there exists ζ̄ ∈ ∂ f (x̄) such that

ζ̄ η(x, x̄) �∈ −intQ, ∀x ∈ F. (8)

Therefore, we have x̄ ∈ SQ I . Since f is generalized Q-invex with respect to η at x̄ , one has

f (x) − f (x̄) − ζη(x, x̄) ∈ Q, ∀ζ ∈ ∂ f (x̄).

Furthermore, we get

ζη(x, x̄) + f (x) − f (x̄) − 2ζη(x, x̄) ∈ Q, ∀ζ ∈ ∂ f (x̄).

Therefore, by (8), there exists ζ̄ ∈ ∂ f (x̄) and

ζ̄ η(x, x̄) + f (x) − f (x̄) �∈ −intQ, ∀x ∈ F,

that is, x̄ ∈ SN Q I . This completes the proof. ��
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6 Conclusions

In this paper, a nonsmooth MOP is investigated under generalized invexity. First, the Kuhn–
Tucker type optimality conditions for MOP are obtained. Subsequently, the relationships
between weakly efficient solutions of MOP and vector-valued saddle points of its Lagrange
function are established. Finally, the relations between weakly efficient solutions of MOP
and solutions of HSVQI and HSNVQI are also derived under some suitable assumptions. In
order to show our presented results, we also give some examples. For future research, we
may study the variational inequalities and optimization problems on (Riemannian) manifolds
since there is a little result in these aspects.
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Appendix

FKKM Lemma Guu and Li (2009), Wu et al. (2011): Let K be a nonempty subset of
Rm , G : K → 2Rm

be a KKM mapping, i.e., for every finite subset {x1, x2, . . . , xm} of
K , co{x1, x2, . . . , xm} is contained in

⋃m
i=1 G(xi ) where co denotes the convex hull, such

that for any x ∈ K , G(x) is closed and G(x∗) is bounded for some x∗ ∈ K . Then there exists
y∗ ∈ K such that y∗ ∈ G(x) for all x ∈ K , i.e.,

⋂
x∈K G(x) �= ∅.
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