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a b s t r a c t

In this paper, a novel evolutionary algorithm called estimation of distribution algorithm
(EDA) is proposed for solving a special class of nonlinear bilevel programming problems
(BLPPs) in which the lower level problem is a convex programming problem for each given
upper level decision. This special type of BLPP is transformed into a equivalent single-level
constrained optimization problem using the Karush-Kuhn-er conditions of the lower level
problem. Then, we propose an EDA based on the statistical information of the superior can-
didate solutions to solve the transformed problem. We stress that the new population of
individuals is sampled from the probabilistic distribution of those superior solutions. Thus,
one of the main advantages of EDA over most other meta-heuristics is its ability to adapt
the operators to the structure of the problem, although adaptation in EDA is usually limited
by the initial choice of the probabilistic model. In addition, two specific rules are estab-
lished in the initialization procedure to make use of the hierarchical structure of BLPPs
and to handle the constraints. Moreover, without requiring the differentiability of the
objective function, or the convexity of the search space of the equivalent problem, the pro-
posed algorithm can address nonlinear BLPPs with non-differentiable or non-convex upper
level objective function and upper level constraint functions. Finally, the proposed algo-
rithm has been applied to 16 benchmark problem; in five of these problems, all of the
upper level variables and lower level variables are 10-dimensional. The numerical results
compared with those of other methods reveal the feasibility and effectiveness of the pro-
posed algorithm.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

The bilevel programming problem (BLPP) addresses an optimization problem whose constraint region is determined
implicitly by another (parametric) mathematical programming problem [15]. This nested system arises when two decision
makers, ordered within a hierarchical structure, may have conflicting objectives. Considering the possible reactions of the
decision maker at the lower level (the follower), the decision maker at the upper level (the leader) optimizes his/her objec-
tive function first. Afterward, the follower selects his/her decision under the given decision of the leader. Because plentiful
real-life problems, such as transportation, management and economics, engineering design, supply chain planning, princi-
pal-agent problems, and health insurance, can be transformed into BLPPs [11–13,19,38,52,54], it is significant to solve these
problems in an efficient way [7,14,29,39,44,53].
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However, the bilevel programming problem is non-convex and non-differentiable. Even the linear bilevel programming
problem, the simplest version of BLPPs, was shown to be NP-hard by Jeroslow [21]. This result was later proved by Bard [6]
and Ben-Ayed and Blair [8]. Afterward, Vicente et al. [40] confirmed that even searching for the local optima of the linear
BLPPs is NP-hard. See Ref. [17] for more detailed discussion of the complexity issues in the linear bilevel programming.

Over the past thirty years, much progress has been made in developing solution methods for BLPPs. Such methods can
generally be classified into the following categories [14,44]: extreme-point search approaches for the linear case, branch-
and-bound approaches, complementary pivoting methods, decent methods, penalty function methods and trust-region
methods. Because methods that are based on meta-heuristics do not require differentiability of the objective functions, gra-
dient information, or convexity of the search space, they have attracted considerable attention for their potential as alterna-
tive methods for bilevel programming problems. Heuristic algorithms (including simulated annealing, neural network,
particle swarm optimization, genetic algorithms, tabu search, bee colony algorithm, cuckoo optimization algorithm and cha-
otic annealing) and their applications have received a large amount of attention over the past few years
[18,22,23,31,36,37,41,44–50]. This attention has motivated the use of heuristic algorithms for bilevel programming prob-
lems [44].

As a new meta-heuristic, an estimation of distribution algorithm (EDA) is one of the stochastic optimization techniques
that explores the space of potential solutions by building and sampling explicit probabilistic models of promising candidate
solutions. This model-based approach to optimization has allowed EDAs to solve many large and complex problems, such as
multi-objective knapsack, military antenna design, identification of clusters of genes with similar expression profiles, eco-
nomic dispatch, forest management, portfolio management, cancer chemotherapy optimization, and environmental moni-
toring network design (see [20] and the references therein). It is important to stress that no other techniques were
shown to be capable of achieving better performance or solving problems of comparable size and complexity than EDAs
in most of these applications. In this paper, we extend the application of EDA to address bilevel programming problems
as an attempt. Notably, there are no reports on solving BLPPs through EDA-type methods. Through building an explicit prob-
abilistic model for the selected candidate solutions that have been obtained so far, EDAs extract the global statistical infor-
mation of the promising solutions. Then, an EDA method improves the quality of the candidate solutions by generating the
new generation of solutions via sampling based on the model, instead of via the GA-type operators of crossover and muta-
tion. Thereby, EDA surpasses other intelligent algorithms for efficiency because of its avoidance of the complex parameter
selection [26]. Similar to other meta-heuristics methods, EDA is implemented without requiring the differentiability of
the objective function or the convexity of the search space.

In this paper, we mainly concentrate on the nonlinear bilevel programming problem, in which both the upper level objec-
tive function and the lower level objective function are all real-valued convex functions. First, we transform the nonlinear
bilevel programming problem into a single-level mathematical programming problem by replacing the lower level problem
with its Karush–Kuhn–Tucker (KKT) conditions. To handle the original upper level constraints and the KKT conditions, a new
fitness function with a penalty scheme is constructed to evaluate the quality of each candidate solution. In solving con-
strained optimization, addressing an infeasible solution is very difficult. Hence, we initially generate the first generation,
while obeying two preset rules: (i) the upper level decision of each individual belongs to the projection of the feasible solu-
tion region onto the solution space of the upper level problem, (ii) the lower level decision of each candidate solves the lower
level problem under the corresponding given upper level decision. Through the above rules, we can initially generate the
solution in the inducible region of the BLPP to improve the efficiency of the algorithm. Then, in each generation, we select
the superior solutions based on their fitness function values and build up a probabilistic model for the selected feasible solu-
tions. Afterward, the algorithm generates new populations based on the model and regularizes new individuals to satisfy the
ordinary restrictions. Note that the proposed EDA calls for no special characters of the upper level objective function and
constraint functions. Thus, it can effectively address the nonlinear bilevel programming problem with a non-differentiable
upper level objective function and non-differentiable or non-convex upper level constraint functions, only if the lower level
problem is convex for each given upper level decision and the solution to the problem (BLPP) exists.

The organization of the remainder of this paper is as follows. The general formulation and basic concepts of BLPP are pre-
sented in Section 2. After a brief recall of the estimation of distribution algorithm, the proposed algorithm for the nonlinear
BLPP is given after the reformulation of BLPP in Section 3. Experimental results regarding 16 benchmark problems are pre-
sented in Section 4 and the paper concludes with a summary in Section 5.

2. The bilevel programming problem

2.1. The general formulation and basic concepts for BLPP

The general formulation of a bilevel programming problem can be stated as follows:

ðBLPPÞ min
x2X;y2Y

Fðx; yÞ ð1Þ

s:t: Gðx; yÞ 6 0; ð2Þ

where y, for each vector x, belongs to the solution set of the so-called lower level problem:
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min
y2Y

f ðx; yÞ ð3Þ

s:t: gðx; yÞ 6 0; ð4Þ

where F, f: Rn � Rm ? R are the objective functions of the upper and lower level problems, respectively. While the vector-val-
ued functions G: Rn � Rm ? Rq and g: Rn � Rm ? Rp are called the upper and lower level constraints, respectively. x2X � Rn

and y2Y � Rm are the decision variables under the control of the upper and lower level decision makers, respectively. The
sets X and Y set additional restrictions for the involved variables.

The basic definitions that pertain to the bilevel programming problem are the following:

(i) The constraint region of the bilevel programming problem:
S = {(x, y) 2 X � Y: G(x, y) 6 0,g(x, y) 6 0}.

(ii) The projection of S onto the leader’s decision space:
S(X) = {x 2 X: $y 2 Y,such that (x, y) 2 S}.

(iii) The set of feasible solutions for the lower level for each fixed x 2 S(X):
S(x) = {y 2 Y: g(x, y) 6 0}.

(iv) The lower level reaction set for each fixed x 2 S(X):
P(x) = {y 2 Y: y 2 argmin{f(x, y): y 2 S(x)}}.

(v) The inducible region of the bilevel programming problem:
IR = {(x, y) 2 X � Y: (x, y) 2 S, y 2 P(x)}.

In terms of this notation, the bilevel programming problem is to optimize the upper level objective function F(x, y) over
the inducible region. Consequently, the bilevel programming problem can be restated as

min
x;y
fFðx; yÞ : ðx; yÞ 2 IRg: ð5Þ

Thus, the induced region IR can be regarded as the feasible region of BLPP. This set is usually non-convex and may be dis-
connected or even empty in the presence of upper level constraints [15].

To ensure that the nonlinear bilevel programming problem is well posed, it is common to make the following
assumptions.

Assumption 1. The polyhedron S is nonempty and compact.

Assumption 2. F(x, y), G(x, y), f(x, y) and g(x, y) are all continuous functions, while f(x, y) and g(x, y) are continuously
differentiable.

Assumption 3. For each decision x that is selected by the leader, the follower has some responses, i.e., P(x) – ;.
Note that the lower level reaction set for some given upper level decision might not be a singleton. There are two possible

modeling approaches when considering the bilevel programming problem, namely, the optimistic or weak approach and the
pessimistic or strong approach [15]. It is assumed that the leader is allowed to select the element in the lower level feasible set
that suits him/her best whenever the follower’s reaction set P(x) is not a singleton for the bilevel programming problem in
the optimistic case. Conversely, in the case of a pessimistic bilevel programming problem, the cooperation of the leader and
follower fails to be accepted, and the follower chooses the behavior, which is least favorable for the leader.

The algorithm presented in this paper is designed for the optimistic bilevel programming problem. Based on this problem,
the feasible solution and optimal solution for the bilevel programming problem are described as follows:

Definition 1. The vector ð�x; �yÞ is called the feasible solution of the bilevel programming problem if ð�x; �yÞ 2 IR.

Definition 2. The vector (x⁄, y⁄) is called the optimal solution of the bilevel programming problem if (x⁄, y⁄) 2 IR and
Fðx�; y�Þ 6 Fð�x; �yÞ 8ð�x; �yÞ 2 IR.

2.2. The development of the BLPP

In this subsection, we transform the nonlinear BLPP into an equivalent single-level programming problem with the above
notation and assumptions.

With the assumption that the constraint region is nonempty and compact, the follower has his/her room for seeking the
corresponding responses for each decision that is made by the leader. In other words, the feasible region of the lower level
problem is nonempty. Thus, the follower’s rational reaction set and the inducible region are guaranteed to be nonempty.
Therefore, the existence of the optimal solution for BLPP is ensured.
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Note that, if the lower level problem is a convex parametric programming problem that satisfies the Manasarian-Fromo-
witz constraint qualification (MFCQ) [30] for each point x 2 S(X), then it is equivalent to the following Karush–Kuhn–Tucker
conditions [9]:

ryLðx; y; kÞ ¼ ryf ðx; yÞ þ kTrygðx; yÞ ¼ 0; ð6Þ
gðx; yÞ 6 0; ð7Þ
k P 0; ð8Þ
kT gðx; yÞ ¼ 0; ð9Þ

where the Lagrangian function of the lower level problem is formed as

Lðx; y; kÞ ¼ f ðx; yÞ þ kT gðx; yÞ; ð10Þ

ry(�) denotes the gradient of the function (�) with respect to y, and k is the vector of Lagrangian multipliers.
Then, we have the following theorem [15]:

Theorem 1. Let (x, y) 2 S; then, a necessary and sufficient condition that (x, y) 2 IR is that there exists a k P 0 such that (x, y, k)
satisfies Eqs. (6)–(9)

To this end, by replacing the lower level problem with its KKT conditions (6)–(9), we can transform the nonlinear BLPP (1)–(4)
into the following equivalent single-level mathematical programming problem (SLP) [16,51]:

ðSLPÞmin
x;y;k

Fðx; yÞ ð11Þ

s:t: Gðx; yÞ 6 0; ð12Þ
ryf ðx; yÞ þ kTrygðx; yÞ ¼ 0; ð13Þ
gðx; yÞ 6 0; ð14Þ
k P 0; ð15Þ
kT gðx; yÞ ¼ 0; ð16Þ
x 2 X; y 2 Y: ð17Þ

Therefore, we have the following theorem [5]:

Theorem 2. A necessary and sufficient condition that (x⁄, y⁄) solves BLPP is that there exists k⁄P 0 such that (x⁄, y⁄, k⁄) is the
optimal solution of SLP.

3. The proposed algorithm for BLPPs

3.1. The description of estimation of the distribution algorithm

Estimation of distribution algorithm (EDA), introduced by Mühlenbein and Paab [32], is a new optimization technique
that has been successfully applied to optimization, engineering, cluster analysis, machine learning and design problems
(see [1,2] and the references therein). Inspired by the natural evolution of the species, genetic algorithms (GAs) perform well
and improve the results that are obtained by previous algorithms in addressing different problems. However, GAs call for
complex investigation by adjusting a large number of parameters in order to achieve good performance. Furthermore,
GAs receive poor performance when addressing certain problems, such as deceptive and separable problems, because of
the disruption of the building blocks. EDA is a combination of GA and statistical learning for employing probabilistic models
to identify relationships among variables. Abandoning the traditional GA-type evolutionary operators, EDA captures global
statistical information in the search space through constructing a probabilistic model for the selected superior solutions ob-
tained so far and generates new candidates via sampling the established probabilistic distribution; this approach is an
important step that distinguishes EDAs from most of the other meta-heuristics. The goal is not to perfectly represent the
population of promising solutions but instead to represent a more general distribution that captures the features of the se-
lected solutions. Hence, this approac can make these solutions better than other candidate solutions. In general, EDAs iterate
the following three phases until the termination criteria are satisfied [2,35]:

Step 1 Select good individuals from a population.
Step 2 Estimate the probability distribution from the selected individuals.
Step 3 Generate new individuals (i.e., offspring) from the estimated distribution.

The last phase replaces the traditional recombination and mutation operators of the genetic and evolutionary algorithms.
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Similar to the development of GAs, research on EDAs has been extended from the discrete domain to continuous optimi-
zation during the past two decades [20]. In those former attempts, EDAs are applied to optimization problems that have fea-
sible solutions and that are encoded by binary strings that have a fixed length. The representative algorithms proposed
include the Univariate Marginal Distribution Algorithm (UMDA), the Bivariate Marginal Distribution Algorithm (BMDA),
and the Bayesian Optimization Algorithm (BOA). In recent years, more researchers have turned to developing EDAs for opti-
mization problems in the continuous case, mainly because it is significant to investigate those problems that have real-val-
ued domains in fields of practical engineering and scientific research. There are two main approaches to applying EDAs into
searching the optima of those problems that are in a continuous domain:

(1) Map the real-valued vectors to discrete variables and solve the discrete problem that is obtained through EDAs, as
discussed above, and finally, map the solutions back to the real-valued domain of the original problem.

(2) Admit the variables to be real-valued and use a probability model for the continuous domain under the basic
formation of EDAs.

Regardless of whether the interactions among the variables are accounted for or not, different types of EDAs arise with the
development of various types of statistical learning. For example, the Estimation of Multivariate Normal Algorithm (EMNA)
was constructed based on the estimation of a multivariate Gaussian distribution for probabilistic characteristics, namely, the
vector of means and the variance–covariance matrix of the candidate solutions [27]. Readers can also refer to [10,28,34] for
more details about EDA.

3.2. The estimation of distribution algorithm for BLPPs

To handle the constraints in SLP, a new fitness function is provided by using a penalty method to evaluate the quality of
each candidate solution. Hence, those better candidates receive higher fitness values, while the relatively worse solutions
show lower fitness values. Moreover, the constraints of the original BLPP are also applied to keep individuals from the
new population in the feasible region. Based on these processes, the estimation of distribution algorithm uses real encoding
for both the upper and lower level variables, and the Lagrangian multipliers are designed as follows.

3.2.1. Coding and initialization rules
First, the floating vector coding method is adopted for its faster convergence rate and higher computing precision. To keep

each individual of the initial population in the feasible region and to make full use of the hierarchical structure of BLPP, the
following two rules for the initialization step are set in advance:

(1) the upper level decision of each individual belongs to the projection of the feasible solution region onto the solution
space of the upper level problem.

(2) the lower level decision of each candidate solves the lower level problem for the corresponding fixed upper level
problem.

The population size of each generation is denoted by PopSize. We first randomly generate PopSize vectors, xi 2 S(X), i = 1, 2,
. . ., PopSize, as the upper level components of the initial points. Then, for each fixed xi, the vector yi is obtained by solving the
following lower level parametric problem (using the MATLAB Optimization Toolbox):

min
y2Y

f ðxi; yÞ

s:t: gðxi; yÞ 6 0; ð18Þ

Afterward, with the fixed upper and lower level variables (xi, yi), the corresponding KKT multipliers ki can be gained
through solving the lower level problem’s KKT conditions (6)–(9). Hence, the individuals generated in this way satisfy the
original constraints and the KKT conditions of the follower’s problem. All of the points zi = (xi, yi, ki) form the initial popula-
tion Pop(0) with the population size PopSize.

3.2.2. Fitness assignment
In this section, the penalty method is applied to address the constraints of SLP. We denote the fitness function at the point

z = (x, y, k) with H(z) = H(x, y, k), which is defined by the following formula:

Hðx; y; kÞ ¼ �Fðx; yÞ � p1

Xq

i¼1

maxf0;Giðx; yÞg � p2

Xm

j¼1

maxf0; jryj
Lðx; y; kÞjg � p3

Xp

t¼1

maxf0; j/ð�gtðx; yÞ; ktÞjg; ð19Þ

where m, p, q are defined as those in Section 2, and the NCP function /: R � R ? R is defined for the complementary condi-
tions from the lower level problem’s KKT conditions as

/ða; bÞ ¼minfa; bg: ð20Þ
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Note that the NCP function has the following property, which guarantees its efficiency in reformulating the complemen-
tary conditions:

/ða; bÞ ¼ 0() a P 0; b P 0; ab ¼ 0: ð21Þ

Let p1, p2, p3 denote the sufficiently large penalty parameters. Then, the fitness function that is defined in this way has the
following property: the fitness value at any point z, which violates the upper level constraints or KKT conditions, is smaller
than that at any feasible point. In this way, feasible solutions can be distinguished from infeasible solutions, and better indi-
viduals can be selected effectively. To be noticed, the optimal solution of the BLPP will achieve the highest fitness value.

3.2.3. The selection of the most promising solutions
From the above ranked population, a subset of the most promising solutions are selected by the selection operator. In this

paper, the selection operator is truncation selection with a threshold s. For example, s = 50% means selecting the 50% best
solutions.

3.2.4. The construction of the probabilistic model
Throughout this paper, the approach that we proposed for BLPPs is primarily based on one of the simplest estimation of

distribution algorithms, which is called the Univariate Marginal Distribution Algorithm for continuous domains (UMDAc)
[24,25], which is motivated by UMDA in the discrete case. With the assumption that all of the univariate distributions
are normal, UMDAc employs a product of independent one-dimensional normal densities to factorize the joint probability
density function.

FðY jl;rÞ ¼
Yn�1

i¼0

NðYi; li;riÞ ¼
Yn�1

i¼0

1ffiffiffiffiffiffiffi
2p
p

ri

e�
1
2ð

Yi�li
ri
Þ

2

; ð22Þ

where n is the dimension of the vector, Yi denotes the i-th component of the vector, and the mean value and standard devi-
ation of the i-th component are denoted by li and ri, respectively. For each component, these two parameters are estimated
from the previous population by employing the following two equations:

li ¼
1
N

XN�1

j¼0

xj
i; ð23Þ

ri ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN�1

j¼0

ðxj
i � liÞ

2

vuut ; ð24Þ

where N is the number of samples.
To estimate the distribution of the superior solution group, the proposed algorithm employs a joint density function that

is factorized as the following equation:

Fðz;l;RÞ ¼
Ynþmþp

k¼0

f ðzk; lk;rkÞ ¼
Ynþmþp

k¼0

1ffiffiffiffiffiffiffi
2p
p

rk

e�
1
2ð

zk�lk
rk
Þ

2

: ð25Þ

With the assumption of independence, the estimation step is simplified into calculating the mean and standard deviation
of each component of z under the guidance of Eqs. (23) and (24). In each generation, these parameters are estimated accord-
ing to the selected superior candidates, in such way as to extract the global statistical information of the previous population.
Hence, the parameters are updated adaptively and accordingly in each iteration.

3.2.5. Offspring generation
Based on the probabilistic model built for the parent population, the proposed algorithm takes samples to generate indi-

viduals randomly. To make these newly generated candidates appropriate and to make the algorithm efficient, we set up a
regulation for them. In other words, only the new individual z = (x, y, k) satisfies the conditions that x 2 X, y 2 Y and k P 0,
and it can be selected as a candidate solution. Otherwise, the algorithm should abandon it and make another sample oper-
ation. Repeat the generating and ‘‘check-up’’ procedures until PopSize new proper individuals are generated. Calculate the
fitness function values of the offspring candidates and sort them based on the values of the fitness function. Therefore,
the new population can be obtained by using the selected offspring individuals and the superior part of the parent popula-
tion, while maintaining a fixed population size PopSize.

3.2.6. Termination criteria
The termination criteria are used to decide when to stop the iteration and return the solution results. In this algorithm, if

the iteration is executed to the preset maximal number of generations Gen_Max or the best solution’s fitness function value
has not been improved in the last consequential Gen_Min generations, then stop the algorithm and take the best solution that
is present (as judged by the fitness function values) as the approximate global optimum of the BLPP.
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3.2.7. The steps of the proposed EDA
The steps of the estimation of distribution algorithm for nonlinear BLPPs is presented as follows:

Step 1. (Initialization) Randomly generate PopSize initial points zi = (xi, yi, ki), i = 1, 2, . . ., PopSize, obeying the initialization
rules. All of the points zi form the initial population Pop(0), and let g = 0;
Step 2. (Evaluation) Evaluate the fitness H(z) at each point in Pop(g) according to the formula in (19).
Step 3. (Selection) Use the truncation selection with the threshold s to select N(<PopSize) superior candidate solutions from
Pop(g) to form the parent population S(g) based on the population’s fitness function values.
Step 4. (Estimation) Estimate the distribution of the selected parent population S(g) to establish a probabilistic model M(g).
Step 5. (Offspring Generating) Sample PopSize proper candidates according to the established model M(g) and choose (Pop-
Size � N) relatively better candidates based on their fitness values. The chosen best offspring candidates and the parent
population S(g) make up the next population Pop(g + 1).
Step 6. (Termination Criteria) Make a judgment on the condition of termination. When the maximal number of generations
Gen_Max is attained or the best result (using the evaluation method in Step 2) has not been improved for Gen_Min straight
iterations, then stop the algorithm and return the optimal solution. Otherwise, let g = g + 1 and go to Step 3.

4. Numerical experiments

In this section, we tested the estimation of distribution algorithm on selected examples from the literature [42,43,45].
These examples involve linear, quadratic, and other nonlinear cases. Exs. 7–16 involve non-convex and non-differentiable
objective functions, whereas Exs. 12–16 are bilevel programming problems that have 10 dimensions for both the leader’s
and follower’s variables, respectively. Some characteristics of these examples are shown in Table 1.

Some of these examples are often solved to demonstrate the performance of the algorithms in the literature. In those
examples, we present the known best solutions that are found by some existing algorithms to make a comparison with
our computational results, when a theoretically optimal solution cannot be determined. The best solution (x⁄, y⁄) and the
upper levels objective function F(x⁄, y⁄) as well as the lower levels objective function f(x⁄, y⁄) at the best solution (x⁄, y⁄)
are recorded. The best solution in the references is denoted by ð�x; �yÞ, and the upper levels objective function Fð�x; �yÞ as well
as the lower levels objective function f ð�x; �yÞ at the best solution ð�x; �yÞ are recorded.

The parameters are chosen as follows: the population size of each generation is fixed with PopSize = 1000, the size of the
selected population is N = 400, the penalty parameters are uniformly set at p1 = p2 = p3 = 10,000, and the threshold of the
truncation selection is s = 50%. The algorithm will stop when one of the termination criteria has been reached, where Gen_-
Max = 20 for Exs. 1–11, Gen_Max = 100 for Exs. 12–16, and Gen_Min = 5 for all of the problems.

First, we execute the proposed EDA with 50 independent runs on each problem. A comparison of the results in our paper
with the results in the references is given in Tables 2 and 3. In Tables 2 and 3, Column ‘‘Ref.’’ sequentially lists the results
obtained by Wang et al. for Ex. 1 [45], Bard for Ex. 2 [7], Aiyoshi and Shimuzu for Ex. 3 [3], Amouzegar for Ex. 4 [4], Oduguwa
and Roy for Exs. 5–6 [33] and Wang et al. for Exs. 7–12 [42].

It can be seen from Tables 2 and 3 that, for Exs. 3, 5, and 9, the solutions that are found by our proposed EDA are better
than or equal to the solutions that are found by the compared algorithms in the references. Although the solutions found by
EDA for Exs. 1, 2, 4 and 11 are worse than the solutions obtained by the compared algorithms, the former are almost as good
as the latter. Note that the solutions found by the algorithm provided in [3] for Ex. 3 are not the global optima, and the

Table 1
Types of the test examples.

No. Type Scale Functions

Ex.1 Linear n = 3; m = 1 Convex, differential
Ex.2 Linear n = 2; m = 3 Convex, differential
Ex.3 Linear n = 2; m = 2 Convex, differential
Ex.4 Quadratic n = 2; m = 2 Convex, differential
Ex.5 Quadratic n = 1; m = 1 Convex, differential
Ex.6 Quadratic n = 1; m = 1 Convex, differential
Ex.7 Nonlinear n = 2; m = 2 Non-convex, non-differential
Ex.8 Nonlinear n = 2; m = 2 Non-convex, non-differential
Ex.9 Nonlinear n = 2; m = 2 Non-convex, non-differential
Ex.10 Nonlinear n = 2; m = 2 Non-convex, non-differential
Ex.11 Nonlinear n = 2; m = 2 Non-convex, non-differential
Ex.12 Nonlinear n = 10; m = 10 Non-convex, non-differential
Ex.13 Nonlinear n = 10; m = 10 Non-convex, non-differential
Ex.14 Nonlinear n = 10; m = 10 Non-convex, non-differential
Ex.15 Nonlinear n = 10; m = 10 Non-convex, non-differential
Ex.16 Nonlinear n = 10; m = 10 Non-convex, non-differential
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solution in this paper is the certain answer. Note that, within the acceptable precision, our results for Ex. 10 are much better
than those obtained by Wang et al. [42]. In other words, both values of the upper level objective function are acceptable and
close enough to the optimal value 0, while the value of the lower level objective function obtained by Wang et al. is worse

Table 2
Comparison of the solutions by EDA with those in the related references for Exs. 1–11.

No. Our proposed EDA Ref.
(x⁄, y⁄) ð�x; �yÞ

Ex. 1 (4.000517, 14.999931, 9.199862, 2) (4, 15, 9.2, 2)
Ex. 2 (2e�6, 0.899997, 4e�6, 0.6, 0.400005) (0, 0.9, 0, 0.6, 0.4)
Ex. 3 (0, 30, �10, 10) (25, 30, 5, 10)
Ex. 4 (0, 2, 1.875, 0.90625) (0, 2, 1.875, 0.9063)
Ex. 5 (10, 0) (10.04, 0.1429)
Ex. 6 (10.0005, 9.9995) (10.03, 9.969)
Ex. 7 (0, 30, �10, 10) (0, 30, �10, 10)
Ex. 8 (0, 30, �10, 10) (0, 30, �10, 10)
Ex. 9 (0, 30, �10, 10) (0, 30, �10, 10)
Ex. 10 (15.29735, 8.245, 10, 8.245) (19.563, 5.272, 10, 5.272)
Ex. 11 (15.29735, 8.245, 10, 8.245) (12.860, 6.205, 10, 6.205)

Table 3
Comparison of the upper and lower level objective function values at the best solution by EDA with those in the references for Exs. 1–11.

No. Our proposed EDA Ref.

F(x⁄, y⁄) f(x⁄, y⁄) Fð�x; �yÞ f ð�x; �yÞ

Ex. 1 41.199207 �9.198828 41.2 �9.2
Ex. 2 �29.200009 3.200009 �29.2 3.2
Ex. 3 0 100 5 0
Ex. 4 �12.678711 �1.015625 �12.68 �1.016
Ex. 5 82 0 82.44 0.271
Ex. 6 100.01 2.5e-07 100.58 0.001
Ex. 7 0 100 0 100
Ex. 8 0 100 0 100
Ex. 9 0 100 0 100
Ex. 10 1.6241e-04 28.0619 6.86e-15 91.45
Ex. 11 1.6241e-04 28.0619 1.47e-14 8.18

Table 4
Comparison of the upper and lower level objective function values at the best solution from EDA with those in Ref. [43] for Exs. 12–16.

No. Our proposed EDA Ref. [43]
x⁄ �x

Ex. 12 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) (0.99999998, 0.99999999, 1.00000006,0.99999999, 1.00000000,
1.00000001, 0.99999999,0.99999992, 0.99999998, 1.00000001)

Ex. 13 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) (1.00000000, 1.00000000, 1.00000000, 1.00000000, 1.00000000,
0.99999999, 0.99999999, 1.00000000, 0.99999999, 0.99999999)

Ex. 14 (1.149034, 0.08833383, 1.254797, 1.182997, 2.130051,
1.742112, 0.3082794, 1.591319, 1.409942, �0.2195419)

(0.21650445, 0.70129941, 0.73361882, 0.27478271, �0.39242837,
0.18513273, 0.69041802, 0.46409579, 0.07205230, 0.77427495)

Ex. 15 (�1.275612, 0.4240169, �1.292204, �0.57017, 1.238698,
2.83057, 1.313386, 0.65589,-2.799304, �1.467915)

(1.55838477, �0.64856587, 1.13718010, 0.10569137, �1.76868487,
0.58635685, 0.74817824, �0.84311991, 0.59501691, 0.49591424)

Ex. 16 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) (1.00347786, 1.00046181, 0.99991034, 0.99996156, 1.00034019,
1.00020616, 0.99985678, 0.9990869, 1.00016481, 0.99989127)

y⁄ �y
Ex. 12 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 10e�3(�0.04845, �0.03471, 0.11674, 0.09264, 0.2121, 0.09969,

0.07125, 0.05798, 0.04344, 0.03512)
Ex. 13 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 10e�9(�0.89425, 0.85196, 0.85196, �0.89425, �0.89425, �0.89425,

�0.67166, 0.85196, 0.85196, 0.85196)
Ex. 14 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 10e�3(�0.04398, �0.00529, 0.02614, �0.41031, �0.08806, 0.52992,

0.29883, �0.39756, �0.57348, 0.58285)
Ex. 15 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 10e�9(0.90664, �0.75161, �0.33431, �0.54023, 0.90664, �0.54023,

0.90663, �0.75161, �0.75161, 0.90664)
Ex. 16 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 10e�3(�0.03757, �0.15561, 0.03938, 0.06108, �0.27616, 0.35876,

�0.29831, 0.02883, 0.00558, �0.02131)
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than ours. Hence, it can be concluded that the solutions found by EDA for these former 11 problems are global optimal solu-
tions or close-to-optimal solutions.

For a further test, we solve the high-dimensional nonlinear BLPPs (10 dimensions for both the leader’s and follower’s vari-
ables, respectively) from Ref. [43]. Similarly, we execute the proposed EDA with 50 independent runs on Exs. 12–16. The
comparison of the results in our paper with those in Ref. [43] are listed in Tables 4 and 5. The best results found by the
EDA and algorithms in the corresponding references for those problems are provided in Tables 4 and 5. The Column ‘‘Conv.
Rate’’ (which represents the convergence rate of the algorithm) in Table 5 shows the counts of the generation when obtaining
the optimal solution to each problem from Ex. 12 to Ex. 16.

For the high-dimensional Exs. 12–16, because EDA fails to obtain the optimal solutions within 20 generations, the great-
est generation to stop the algorithm is set at ‘‘Gen_Max = 100’’. It can be seen from Tables 4 and 5 that EDA finds the optimal
or close-to-optimal solutions of these problems within no more than 79 iterations, and it is especially notable that only 22
iterations were required for Ex. 15. Furthermore, the solutions found by EDA for Exs. 12, 13 and 16 are exactly the global
optimal solutions, which are obviously better than those found by the compared algorithm. These two tables show that
the solutions found by EDA and the compared algorithm are close-to-optimal solutions. It should also be noted that, due
to the two pre-set rules in the procedure for initialization, all of the solutions found by EDA solve the corresponding lower
level problems well.

To summarize, the solution results and the comparison shown in these four tables reveal the feasibility of the proposed
algorithm for addressing both low-dimensional and high-dimensional (10 dimensions for both the leader’s and follower’s
variables, respectively) nonlinear BLPPs, regardless of the differentiability of the upper level objective functions or the con-
vexity of the decision space.

5. Conclusions

In this paper, the EDA is proposed for solving a class of nonlinear bilevel programming problems. First, we transform
the nonlinear BLPP into an equivalent single-level optimization problem by replacing the lower level problem with its
KKT conditions. Hence, we can handle the BLPPs in a much easier way. To solve the equivalent problem, we construct
the estimation of distribution algorithm. In contrast to GA, special steps for estimating the distribution of the superior
solution population and sampling new candidates are introduced instead of applying the crossover and mutation oper-
ators. Through this specific scheme, the quality of each generation becomes improved in the long run, and the solution
or an approximate solution is achieved. The proposed EDA is executed on 16 benchmark problems, and the experimental
results have been compared with those found in the related references. The comparison reveals that the proposed algo-
rithm can also be used as a competitive approach for addressing BLPPs, even for the case in which the upper level objec-
tive functions are non-differentiable or the variables of both the upper level problem and the lower level problem are all
high-dimensional. Thus, the evolutionary algorithm herein can be considered to be an effective tool for solving nonlinear
BLPPs.

In our future work, the following will be researched:

(1) Research to demonstrate the efficiency of the proposed algorithm by solving more and larger-scale examples gener-
ated as the references.

(2) Comparison with other algorithms by solving more examples.
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Table 5
Comparison of the upper and lower level objective function values at the best solution by EDA with those in Ref. [43] for Exs. 12–16.

No. Our proposed EDA Ref. [43] Conv. rate

F(x⁄, y⁄) f(x⁄, y⁄) Fð�x; �yÞ f ð�x; �yÞ

Ex. 12 0 1 6.21498e�04 1 59
Ex. 13 0 1 8.50866e�09 1 56
Ex. 14 4.64e�06 1 2.03246e�05 1 79
Ex. 15 1.12e�05 1 6.17254e�08 1 22
Ex. 16 0 1 7.22651e�03 1 56
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Appendix A. Test problems

Problem Ex 1. [45]:

max
x;y

Fðx; yÞ ¼ �x1 þ 2x2 þ x3 þ 3y;

where y solves:

max
y

f ðx; yÞ ¼ 2x1 � x3 � 4y;

s:t: 0:2x1 þ x3 þ y 6 12; �2x2 þ y 6 10;
� 3x1 � x2 þ x3 6 12; �x1 þ y 6 �2;
� 2x1 � x3 6 �2; x2 6 15; x P 0; y P 2:

Problem Ex 2. [7]:

min
x;y

Fðx; yÞ ¼ �8x1 � 4x2 þ 4y1 � 40y2 � 4y3;

s:t: x P 0;

where y solves:

min
y

f ðx; yÞ ¼ x1 þ 2x2 þ y1 þ y2 þ 2y3;

s:t: � y1 þ y2 þ y3 6 1; 2x1 � y1 þ 2y2 � 0:5y3 6 1;
2x2 þ 2y1 � y2 � 0:5y3 6 1; y P 0:

Problem Ex 3. [3]:

min
x;y

Fðx; yÞ ¼ 2x1 þ 2x2 � 3y1 � 3y2 � 60;

s:t: x1 þ x2 þ y1 � 2y2 6 40 0 6 x 6 50;

where y solves:

min
y

f ðx; yÞ ¼ ðy1 � x1 þ 20Þ2 þ ðy2 � x2 þ 20Þ2;

s:t: x1 � 2y1 P 10; x2 � 2y2 P 10;
� 10 6 y 6 20:

Problem Ex 4. [4]:

min
x;y

Fðx; yÞ ¼ �x2
1 � 3x2

2 � 4y1 þ y2
2;

s:t: x2
1 þ 2x2 6 4; x P 0;

where y solves:

min
y

f ðx; yÞ ¼ 2x2
1 þ y2

1 � 5y2;

s:t: x2
1 � 2x1 þ x2

2 � 2y1 þ y2 P �3;
x2 þ 3y1 � 4y2 P 4; y P 0:

Problem Ex 5. [33]:

min
x;y

Fðx; yÞ ¼ ðx� 1Þ2 þ ðy� 1Þ2;

where y solves:

min
y

f ðx; yÞ ¼ 0:5y2 þ 500y� 50xy:
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Problem Ex 6. [33]:

min
x;y

Fðx; yÞ ¼ x2 þ ðy� 10Þ2;

s:t: � xþ y 6 0; 0 6 x 6 15;

where y solves:

min
y

f ðx; yÞ ¼ ðxþ 2y� 30Þ2;

s:t: xþ y 6 20; 0 6 y 6 20:

Problem Ex 7. [42]:

min
x;y

Fðx; yÞ ¼ j2x1 þ 2x2 � 3y1 � 3y2 � 60j;

s:t: x1 þ x2 þ y1 � 2y2 6 40; 0 6 x 6 50;

where y solves:

min
y

f ðx; yÞ ¼ ðy1 � x1 þ 20Þ2 þ ðy2 � x2 þ 20Þ2;

s:t: 2y1 � x1 þ 10 6 0; 2y2 � x2 þ 10 6 0;
� 10 6 y 6 20:

Problem Ex 8. [42]: The problem is the same as Q7 except for

Fðx; yÞ ¼ j sinð2x1 þ 2x2 � 3y1 � 3y2 � 60Þj:

Problem Ex 9. [42]: The problem is the same as Q7 except for

Fðx; yÞ ¼ j tanð2x1 þ 2x2 � 3y1 � 3y2 � 60Þj:

Problem Ex 10. [42]:

min
x;y

Fðx; yÞ ¼ j sinððx1 � 30Þ2 þ ðx2 � 20Þ2 � 20y1 þ 20y2 � 225Þj;

s:t: 30� x1 � 2x2 6 0; x1 þ x2 � 25 6 0; x2 6 15;

where y solves:

min
y

f ðx; yÞ ¼ ðy1 � x1Þ2 þ ðy2 � x2Þ2;

s:t: 0 6 y 6 10:

Problem Ex 11. [42]: The problem is the same as Q10 except for

Fðx; yÞ ¼ j tanððx1 � 30Þ2 þ ðx2 � 20Þ2 � 20y1 þ 20y2 � 225Þj:

Problem Ex 12. [43]:

min
x;y

Fðx; yÞ ¼
X10

i¼1

½jxi � 1j þ jyij�;

where y solves:

min
y

f ðx; yÞ ¼ expf½1þ
X10

i¼1

ðy2
i =4000Þ �

Y10

i¼1

cosðyi=
ffiffi
i
p
Þ�
X10

i¼1

x2
i g;

s:t: � p 6 y 6 p:
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Problem Ex 13. [43]:

min
x;y

Fðx; yÞ ¼
X10

i¼1

½jxi � 1j þ jyij�;

where y solves:

min
y

f ðx; yÞ ¼ expf½100þ
X10

i¼1

ðy2
i � 10 cosð2pyiÞÞ�

X10

i¼1

x2
i g;

s:t: � 3 6 y 6 3:

Problem Ex 14. [43]:

min
x;y

Fðx; yÞ ¼ j sinð
X10

i¼1

½jxi � 1j þ jyij�Þj;

where y solves:

min
y

f ðx; yÞ ¼ expf½1þ
X10

i¼1

ðy2
i =4000Þ �

Y10

i¼1

cosðyi=
ffiffi
i
p
Þ�
X10

i¼1

x2
i g;

s:t: � p 6 y 6 p:

Problem Ex 15. [43]:

min
x;y

Fðx; yÞ ¼ j sinð
X10

i¼1

½jxi � 1j þ jyij�Þj;

where y solves:

min
y

f ðx; yÞ ¼ expf½100þ
X10

i¼1

ðy2
i � 10 cosð2pyiÞÞ�

X10

i¼1

x2
i g;

s:t: � 3 6 y 6 3:

Problem Ex 16. [43]:

min
x;y

Fðx; yÞ ¼
X10

i¼1

½jxi � 1j þ jyij�;

where y solves:

min
y

f ðx; yÞ ¼ expf½1þ
X10

i¼1

ððxiyiÞ
2
=4000Þ �

Y10

i¼1

cosðxiyi=
ffiffi
i
p
Þ�g;

s:t: � p 6 y 6 p:
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