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Abstract This paper is devoted to the semicontinuity of solutions of a parametric general-
ized Minty vector quasivariational inequality problem with set-valued mappings [(in short
(PGMVQVI)] in Hausdorff topological vector spaces, when the mapping and the constraint
sets are perturbed by different parameters. The upper (lower) semicontinuity and closed-
ness of the solution set mapping for (PGMVQVI) are established under some appropriate
assumptions. The sufficient and necessary conditions of the Hausdorff lower semicontinuity
and Hausdorff continuity of the solution set mapping for (PGMVQVI) are also derived with-
out monotonicity. As an application, we discuss the upper semicontinuity for the solution set
mapping of a special case of the (PGMVQVI).

Keywords Lower (upper) semicontinuity · Closedness · Hausdorff continuity · Nonlinear
scalarization function · Gap function · Parametric generalized Minty vector quasivariational
inequality

Mathematics Subject Classification 49J40 · 90C33

1 Introduction

Vector variational inequality problems [in short (VVI)] were firstly introduced by Giannessi
(1980) in finite-dimensional spaces. Since then, extensive study of (VVI) has been done in
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112 J.-W. Chen, Z. Wan

finite and infinite spaces (see Giannessi 1998, 2000; Facchinei and Pang 2003; Chen et al.
2000, 2005a,b; Yang and Yao 2002; Chen and Wan 2011 and the references therein). (VVI)
has been proved to be a very powerful tool of the current mathematical technology, which
has been widely applied to transportation, finance and economics, mathematical physics,
engineering sciences and so forth. In many situations, we always want to know the behavior
of solution sets of VVI in practical problems when the problems’ data vary. The stability of the
solution set mappings for vector variational inequality and optimization with perturbed data
is of great importance in variational inequalities and optimization theory. Several variants
of stability, such as semicontinuity, continuity, Hölder continuity, Lipschitz continuity and
some kinds of differentiability of the solution set mapping, have been studied for variational
inequalities and equilibrium problems (see Zhong and Huang 2010; Li and Chen 2009;
Barbagallo and Cojocaru 2009; Yen 1995; Huang et al. 2006; Chen et al. 2011, 2012a, 2013;
Wong 2010 and the references therein).

Barbagallo and Cojocaru (2009) considered a class of scalar-type pseudo-monotone para-
metric variational inequalities in Banach space and showed that problems admitted con-
tinuous solutions with respect to the parameter. Khanh and Luu (2007) studied a class of
Stampacchia type parametric multivalued quasivariational inequalities and obtained the semi-
continuity of the solution sets and approximate solution sets. Recently, Zhong and Huang
(2011a) studied the solution stability of parametric weak vector variational inequalities in
reflexive Banach spaces. They obtained the lower semicontinuity of the solution mapping for
the parametric weak vector variational inequalities with strictly C-pseudomapping, and also
proved the lower semicontinuity of the solution mapping by degree-theoretic method. Aussel
and Cotrina (2011) discussed the continuity properties of the strict and star solution mapping
of a scalar quasivariational inequality in Banach spaces. Zhao (1997) established a sufficient
and necessary condition (H1) for the Hausdorff lower semicontinuity of the solution mapping
to parametric optimization problems. Under weaker assumptions, Kien (2005) also obtained
the sufficient and necessary condition (H1) for the Hausdorff lower semicontinuity of the
solution mapping to the problem of Zhao (1997). Using a condition (Hg) similar to that given
in Zhao (1997), Li and Chen (2009) proved that (Hg) is also sufficient for the Hausdorff
lower semicontinuity of the solution mapping to a class of weak vector variational inequality.
Very recently, Chen et al. (2010) further extended the main results of Li and Chen (2009)
to the parametric weak vector quasivariational inequality of Stampacchia type in Hausdorff
topological vector spaces. Zhong and Huang (2011b) gave a key assumption (Hg)′ similar
to (Hg) of Li and Chen (2009) and further proved a sufficient and necessary condition (Hg)′
for the Hausdorff lower semicontinuity and Hausdorff continuity of the solution mapping
to parametric weak vector variational inequalities of Stampacchia type in reflexive Banach
spaces.

On the other hand, Minty variational inequality has been shown to characterize some
kinds of equilibrium more qualified than Stampacchia variational inequalities (see Giannessi
1998; Zhong and Huang 2010; Chen et al. 2012b and the references therein). Lalitha and
Bhatia (2011) stated the importance of the solution stability for parametric quasivariational
inequalities of the Minty type, presented various sufficient conditions for the upper and
lower semicontinuity of solution sets as well as the approximate solution sets to a parametric
scalar quasivariational inequality of the Minty type in finite-dimensional Euclidean spaces.
To the best of our knowledge, these problems have received few attentions so far in infinite
dimensions such as Banach spaces and Hausdorff topological vector spaces.

Inspired and motivated by the researches going on in this direction, we investigate the semi-
continuity of solutions for a parametric generalized Minty vector quasivariational inequalities
problem with set-valued mappings [in short (PGMVQVI)] in Hausdorff topological vector
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Semicontinuity for PMVQVI 113

spaces, when the mapping and the constraint sets are perturbed by different parameters.
Under some suitable assumptions, we establish the Berge and Hausdorff upper semicontinu-
ity, Berge lower semicontinuity and closedness of the solution set mapping for (PGMVQVI).
A parametric gap function is also introduced for (PGMVQVI) in Hausdorff topological vec-
tor spaces. By virtue of the parametric gap function, sufficient and necessary conditions of
the Hausdorff lower semicontinuity and Hausdorff continuity of the solution set mapping for
(PGMVQVI) are derived without monotonicity. As an application, we discuss the Berge and
Hausdorff upper semicontinuity for a special case of (PGMVQVI). Moreover, examples are
also provided for analyzing and illustrating the obtained results. The results presented in this
paper develop, extend and improve some of the main results of Lalitha and Bhatia (2011).

2 Preliminaries

Throughout this paper, let M and
∧

(the spaces of parameters) be two Hausdorff topological
spaces, and X and Y be two locally convex Hausdorff topological vector spaces with the
topological dual spaces X∗ and Y ∗, respectively. Let L(X, Y )be the set of all linear continuous
operators from X to Y , the value of a linear operator t ∈ L(X, Y ) at x ∈ X is denoted by
〈t, x〉, and let C : X → 2Y be a set-valued mapping such that C(x) is a proper closed convex
cone for all x ∈ X with intC(x) �= ∅. We always assume that 〈·, ·〉 is continuous, 2X denotes
the family of all nonempty subsets of X .

We consider the following generalized Minty vector quasivariational inequality
(GMVQVI): find x ∈ K (x) such that

〈t, y − x〉 �∈ −intC(x), ∀y ∈ K (x), t ∈ T (y),

where T : X → 2L(X,Y ) and K : X → 2X are two set-valued mappings.
If the mappings K and T are perturbed by parameters μ ∈ ∧

and λ ∈ M , respectively,
then, for any given (μ, λ) ∈ ∧ ×M , we define the PGMVQVI: find x ∈ K (x, μ) such that

〈t, y − x〉 �∈ −intC(x), ∀y ∈ K (x, μ), t ∈ T (y, λ), (1)

where K : X × ∧ → 2X and T : X × M → 2L(X,Y ) are two set-valued mappings.
If

∧ = M, X = Y,
∧

is a nonempty closed subset of Rn and A is a nonempty closed and
convex subset of Y , where Y = Rm, K̃ : Y × ∧ → 2Y and T : ∧ ×Y → 2Y are two
set-valued mappings, C(x) = Rm+ for all x ∈ X , set K (x, μ) = K̃ (x, μ) ∩ A, then (1) is
reduced to the following parametric Minty quasivariational inequality corresponding to a
parameter μ ∈ ∧

: find x ∈ K̃ (x, μ) ∩ A such that

〈t, x − y〉 ≤ 0, ∀y ∈ K̃ (x, μ), t ∈ T (y, μ), (2)

which has been studied by Lalitha and Bhatia (2011).
For each (μ, λ) ∈ ∧×M , let E(μ) = {x ∈ X : x ∈ K (x, μ)}, and denote the solutions

set of (1) by S(μ, λ) corresponding to the parameters (μ, λ), i.e.,

S(μ, λ) = {x ∈ E(μ) : 〈t, y − x〉 �∈ −intC(x), ∀y ∈ K (x, μ), t ∈ T (y, λ)}.
We call the set-valued mapping S : ∧×M → 2X as the solution mapping of (1). In the
following, we always assume that S(μ, λ) �= ∅ for all (μ, λ) ∈ ∧ ×M .

Our main concern is to study the semicontinuity of the solution mapping S(μ, λ), specif-
ically, the Berge and Hausdorff lower semicontinuity, and Berge and Hausdorff upper semi-
continuity of S(μ, λ) in Hausdorff topological vector spaces.

123
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We first recall some definitions and basic results in the literature.

Definition 2.1 Chen et al. (2005a,b) The nonlinear scalarization function ξe : X × Y → R
is defined by

ξe(x, y) = inf{z ∈ R : y ∈ ze(x) − C(x)}, ∀(x, y) ∈ X × Y,

where e : X → Y is vector-valued and e(x) ∈ intC(x) for all x ∈ X.

Example 2.2 Chen et al. (2010) If Y = Rn, e(x) = e, and C(x) = Rn+ for any x ∈ X ,
where e = (1, 1, . . . , 1)T ∈ intRn+, then the function ξe(x, y) = max1≤i≤n{yi } is a nonlinear
scalarization function for all x ∈ X, y = (y1, y2, . . . , yn)T ∈ Y .

By Chen et al. (2005a, Theorem 2.1), Chen et al. (2010, Propositions 2.2 and 2.3), and Zhong
and Huang (2011b, Lemma 2.3), the nonlinear scalarization function ξe(·, ·) has the following
properties.

Proposition 2.3 Let e : X → Y be a continuous selection from the set-valued map intC(·).
For any given x ∈ X, y ∈ Y and r ∈ R, the following results hold:

(i) If the mappings C(·) and Y \ intC(·) are B-u.s.c on X, then ξe(·, ·) is continuous on
X × Y ;

(ii) The mapping ξe(x, ·) : Y → R is convex;
(iii) ξe(x, y) < r ⇔ y ∈ re(x) − intC(x);
(iv) ξe(x, y) ≥ r ⇔ y �∈ re(x) − intC(x);
(v) ξe(x, re(x)) = r , especially, ξe(x, 0) = 0.

Proposition 2.4 Chen et al. (2005a) Let X and Y be two locally convex Hausdorff topological
vector spaces; let C : X → 2Y be a set-valued mapping such that, for each x ∈ X, C(x) is
a proper, closed, convex cone in Y with intC(x) �= ∅, and let e : X → Y be a continuous
selection from the set-valued map intC(·). Define a set-valued mapping V : X → 2Y by
V (x) = Y \ intC(x) for x ∈ X. Then, it holds that

(i) if V (·) is B-u.s.c on X, then ξe(·, ·) is upper semicontinuous on X × Y ;
(ii) if C(·) is B-u.s.c on X, then ξe(·, ·) is lower semicontinuous on X × Y .

Definition 2.5 Aubin and Ekeland (1984) Let � be a Hausdorff topological space, and X be
a locally convex Hausdorff topological vector space. A set-valued mapping F : � → 2X is
said to be

(i) Upper semicontinuous in the sense of Berge (B-u.s.c) at γ0 ∈ � iff, for each open set
V with F(γ0) ⊂ V , there exists δ > 0 such that

F(γ ) ⊂ V, ∀γ ∈ B(γ0, δ);
(ii) Lower semicontinuous in the sense of Berge (B-l.s.c) at γ0 ∈ � iff, for each open set V

with F(γ0) ∩ V �= ∅, there exists δ > 0 such that

F(γ ) ∩ V �= ∅, ∀γ ∈ B(γ0, δ);
(iii) Upper semicontinuous in the sense of Hausdorff (H-u.s.c) at γ0 ∈ � iff, for each ε > 0,

there exists δ > 0 such that

F(γ ) ⊂ U (F(γ0), ε), ∀γ ∈ B(γ0, δ);
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(iv) Lower semicontinuous in the sense of Hausdorff (H-l.s.c) at γ0 ∈ � iff, for each ε > 0,
there exists δ > 0 such that

F(γ0) ⊂ U (F(γ ), ε), ∀γ ∈ B(γ0, δ);
(v) Closed iff, the graph of F is closed, i.e., the set G(F) = {(γ, x) ∈ � × X : x ∈ F(γ )}

is closed in � × X .

In B(γ0, δ), γ0 is the center and δ is the radius of ball in �. We say F is H-l.s.c (resp.
H-u.s.c, B-l.s.c, B-u.s.c) on � iff it is H-l.s.c (resp. H-u.s.c, B-l.s.c, B-u.s.c) at each γ ∈ �. F
is called continuous (resp. H-continuous) on � iff it is both B-l.s.c (resp. H-l.s.c) and B-u.s.c
(resp. H-u.s.c) on �.

Definition 2.6 Berge (1963) A set B ⊂ X is said to be balanced if ρB ⊂ B for each ρ ∈ R
with |ρ| ≤ 1.

Lemma 2.7 Aubin and Ekeland (1984)

(i) F is B-l.s.c at γ0 ∈ � if and only if, for any net {γα} ⊆ � with γα → γ0 and x0 ∈ F(γ0),
there exists a net {xα} ⊆ X with xα ∈ F(γα) for all α, such that xα → x0.

(ii) If F is compact-valued, then F is B-u.s.c at γ0 ∈ � if and only if, for any net {γα} ⊆ �

with γα → γ0 and for any net {xα} ⊆ X with xα ∈ F(γα) for all α, there exist
x0 ∈ F(γ0) and a subnet {xβ} of {xα} such that xβ → x0.

(iii) If F is B-u.s.c and closed-valued, then F is closed. Conversely, if F is closed and X is
compact, then F is B-u.s.c.

Lemma 2.8 Bank et al. (1982) Let � be a Hausdorff topological space, and X a locally
convex Hausdorff topological vector space, and let F : � → 2X be a set-valued mapping
and γ0 ∈ � be a given point.

(i) If F is B-u.s.c at γ0, then F is H-u.s.c at γ0. Conversely, if F is H-u.s.c at γ0 and F(γ0)

is compact, then F is B-u.s.c at γ0.
(ii) If F is H-l.s.c at γ0, then F is B-l.s.c at γ0. Conversely, if F is B-l.s.c at γ0 and cl(F(γ0))

is compact, then F is H-l.s.c at γ0.

Lemma 2.9 Berge (1963) For each neighborhood U of 0X , there exists a balanced open
neighborhood © of 0X such that © + © + © ⊂ U.

3 Upper semicontinuity

In this section, we shall study the Berge (Hausdorff) upper semicontinuity of the solution
mapping S(μ, λ) for the (PGMVQVI) corresponding to a pair of parameters (μ, λ).

Theorem 3.1 Assume that the following conditions are satisfied:

(i) E(·) is B-u.s.c with compact values on
∧

;
(ii) K (·, ·) is B-l.s.c on X × ∧

;
(iii) T (·, ·) is B-l.s.c with compact values on X × M;
(iv) W (·) = Y \ −intC(·) is closed on X. Then the solution mapping S(·, ·) is H-u.s.c and

closed on
∧ ×M.
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116 J.-W. Chen, Z. Wan

Proof Suppose to the contrary that there exists (μ0, λ0) ∈ ∧ ×M such that S(·, ·) is not
B-u.s.c at (μ0, λ0). Then there exists an open set V satisfying S(μ0, λ0) ⊂ V , and net
{(μα, λα)} and xα ∈ S(μα, λα) such that (μα, λα) → (μ0, λ0) and xα �∈ V for all α. Since
xα ∈ S(μα, λα), then xα ∈ E(μα). By assumption (i), E(·) is B-u.s.c with compact values
at μ0. Then there exists x0 ∈ E(μ0) such that xα → x0 (here we may take a subnet {xβ} of
{xα} if necessary).

Suppose that x0 �∈ S(μ0, λ0), i.e., there exists y1 ∈ K (x0, μ0), for each t1 ∈ T (y1, λ0)

or, for each ȳ ∈ K (x0, μ0), there exists t̄ ∈ T (ȳ, λ0) such that

〈t1, y1 − x0〉 ∈ −intC(x0) (3)

or,

〈t̄, ȳ − x0〉 ∈ −intC(x0). (4)

Taking into account xα ∈ S(μα, λα) that

〈tα, zα − xα〉 �∈ −intC(xα), ∀zα ∈ K (xα, μα), tα ∈ T (zα, λα).

Since K (·, ·) is B-l.s.c at (x0, μ0), for any net {(xα, μα)} ⊆ X ×∧
with (xα, μα) → (x0, μ0)

and any z0 ∈ K (x0, μ0), there exists zα ∈ K (xα, μα) such that zα → z0. Again from (iii),
T (·, ·) is B-l.s.c with compact values at (z0, λ0). For any net {(zα, λα)} ⊆ X × M with
(zα, λα) → (z0, λ0) and any t0 ∈ T (z0, λ0), there exists tα ∈ T (zα, λα) such that tα → t0.
Therefore, 〈tα, zα − xα〉 → 〈t0, z0 − x0〉. By (iv), one has

〈t0, z0 − x0〉 ∈ Y \ −intC(x0),

that is,

〈t0, z0 − x0〉 �∈ −intC(x0), ∀z0 ∈ K (x0, μ0), t0 ∈ T (z0, λ0),

which contradicts (3) and (4). This implies that x0 ∈ S(μ0, λ0) ⊂ V, which leads to a
contradiction. Since xα �∈ V,∀α, xα → x0 and V is open. Thus, S(·, ·) is B-u.s.c at each
(μ0, λ0) ∈ ∧ ×M. By Lemma 2.8, we know that S(·, ·) is H-u.s.c at each (μ0, λ0) ∈ ∧×M.

On the other hand, we show that S(·, ·) is closed at each (μ0, λ0) ∈ ∧ ×M. Taking
xα ∈ S(μα, λα) with (μα, λα) → (μ0, λ0) and xα → x0. Then, xα ∈ E(μα). Together with
(i), this yields that x0 ∈ E(μ0). By the same proof as above, we have x0 ∈ S(μ0, λ0), which
implies that S(·, ·) is closed on

∧ ×M . ��
Remark 3.2 From the proof of Theorem 3.1, we know that, if all conditions of Theorem 3.1
are satisfied, then the solution mapping S(·, ·) is B-u.s.c on

∧×M.

Remark 3.3 Chen et al. (2010) Since the set-valued mapping E : ∧ → 2X is related with
the mapping K : X ×∧ → 2X , if K is B-u.s.c with closed values and X is a compact space,
then the mapping E is B-u.s.c.

From Theorem 3.1, we can conclude the following corollary:

Corollary 3.4 Let (μ0, λ0) ∈ ∧ ×M be a given point. If E(μ0) is a compact set, K (·, ·) is B-
l.s.c on X ×{μ0}, T (·, ·) is B-l.s.c with compact values on X ×{λ0}, and W (·) = Y \−intC(·)
is closed on X, then S(μ0, λ0) is a compact set.

Theorem 3.5 Let (μ0, λ0) ∈ ∧ ×M be a given point. Assume that the following conditions
are satisfied:
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(i) E(·) is B-u.s.c with compact values on
∧

.
(ii) For any x0 ∈ K (x0, μ0), (xα, μα, λα) → (x0, μ0, λ0) and

〈t0, y0 − x0〉 ∈ −intC(x0) (5)

for some y0 ∈ K (x0, μ0) and t0 ∈ T (y0, λ0) implies that there exists α such that

〈tα, yα − xα〉 ∈ −intC(xα) (6)

for some yα ∈ K (xα, μα) and tα ∈ T (yα, λα). Then the solution mapping S(·, ·) is H-u.s.c
at (μ0, λ0).

Proof Suppose to the contrary that the solution mapping S(·, ·) is not B-u.s.c at (μ0, λ0).
Then there exists an open set V such that S(μ0, λ0) ⊂ V , and net {(μα, λα)} ⊆ ∧×M and
xα ∈ S(μα, λα) such that (μα, λα) → (μ0, λ0) and xα �∈ V,∀α. Since xα ∈ E(μα) and E(·)
is B-u.s.c with compact values at μ0, there is an x0 ∈ E(μ0) such that xα → x0 ∈ E(μ0)\V .
Hence, x0 ∈ K (x0, μ0) and (xα, μα, λα) → (x0, μ0, λ0). By virtue of xα ∈ S(μα, λα), we
get

〈tα, yα − xα〉 �∈ −intC(xα), ∀yα ∈ K (xα, μα), tα ∈ T (yα, λα).

By (ii), we have

〈t0, y0 − x0〉 �∈ −intC(x0), ∀y0 ∈ K (x0, μ0), t0 ∈ T (y0, λ0),

i.e., x0 ∈ S(μ0, λ0), which contradicts that x0 ∈ E(μ0) \ V . Thus, the solution mapping
S(·, ·) is B-u.s.c at (μ0, λ0). By Lemma 2.8, S(·, ·) is H-u.s.c at (μ0, λ0). ��
Remark 3.6 From the proof of Theorem 3.5, we know that, if the conditions (i) and (ii) of
Theorem 3.5 hold, then the solution mapping S(·, ·) is also B-u.s.c on

∧ ×M.

Remark 3.7 It is easy to see that the conditions (ii)–(iv) of Theorem 3.1 implies the condition
(ii) of Theorem 3.5. Indeed, the condition (ii) of Theorem 3.5 is a very mild condition, which
means that, if, for some y0 ∈ K (x0, μ0), t0 ∈ T (y0, λ0), the inequality (5) is satisfied, then
the similar inequality (6) must be preserved for some yα ∈ K (xα, μα), tα ∈ T (yα, λα)

corresponding to some net (xα, μα, λα) with (xα, μα, λα) → (x0, μ0, λ0). However, if
S(·, ·) is B-u.s.c and H-u.s.c at (μ0, λ0), the condition (ii) of Theorem 3.5 does not imply the
conditions (ii)–(iv) of Theorem 3.1.

Example 3.8 Let
∧ = M = (−1, 1), X = Y = R, and C(x) = R+ for all x ∈ X . Define

the set-valued mappings K : X × ∧ → 2X and T : X × M → 2Y by

T (x, λ) =
{ [1, 2], if x = 0,

{3}, if x �= 0,

and

K (x, μ) =
{ {0, 1}, if x = 0,

{χ ∈ X : χ ∈ [0, |μ|]}, if x �= 0.

Then, for every μ ∈ ∧
, E(μ) = [0, |μ|]∪{1}. So, E(·) is B-u.s.c on

∧
. For (μ0, λ0) = (0, 0),

Theorem 3.5(ii) is satisfied. After computation, S(μ, λ) = {0} for all (μ, λ) ∈ ∧ ×M . Thus,
S(·, ·) is B-u.s.c at (μ0, λ0). But the mappings K and T are not B-u.s.c at (0, 0).
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118 J.-W. Chen, Z. Wan

4 Lower semicontinuity

In this section, we study the Berge and Hausdorff lower semicontinuity of the solution
mapping S(μ, λ) for the (PGMVQVI) corresponding to a pair of parameters (μ, λ).

Theorem 4.1 For any given (μ0, λ0) ∈ ∧ ×M, if the following conditions are satisfied:

(i) E(·) is B-l.s.c on
∧

.
(ii) For any x0 ∈ K (x0, μ0), (xα, μα, λα) → (x0, μ0, λ0) and

〈t, y − x0〉 �∈ −intC(x0), ∀y ∈ K (x0, μ0), t ∈ T (y, λ0) (7)

implies that there exists α such that

〈tα, yα − xα〉 �∈ −intC(xα), ∀yα ∈ K (xα, μα), tα ∈ T (yα, λα). (8)

Then the solution mapping S(·, ·) is B-l.s.c at (μ0, λ0).

Proof Suppose to the contrary that the solution mapping S(·, ·) is not B-l.s.c at (μ0, λ0).
Then there exist (μα, λα) ∈ ∧ ×M with (μα, λα) → (μ0, λ0) and x0 ∈ E(μ0) such that
for every sequence xα ∈ S(μα, λα), xα �→x0. Since E(·) is B-l.s.c at μ0, μα → μ0 and
x0 ∈ E(μ0), there exists x̃α ∈ E(μα) such that x̃α → x0.

Without loss of generality, taking into account the contradiction assumption, set x̃α �∈
S(μα, λα). Then, for some ỹα ∈ K (x̃α, μα) and t̃α ∈ T (ỹα, λα),

〈t̃α, ỹα − x̃α〉 ∈ −intC(x̃α). (9)

Due to x0 ∈ S(μ0, λ0), it implies that

〈t0, y0 − x0〉 �∈ −intC(x0), ∀y0 ∈ K (x0, μ0), t0 ∈ T (y0, λ0). (10)

In view of (x̃α, μα, λα) → (x0, μ0, λ0) and from (ii), there exists α such that

〈tα, yα − x̃α〉 �∈ −intC(x̃α), ∀yα ∈ K (x̃α, μα), tα ∈ T (yα, λα),

which contradicts (9). ��
Remark 4.2 The condition (ii) of Theorem 4.1 is a very weak condition, which can be
explained that, if the inequality (7) is satisfied for all y ∈ K (x0, μ0), t ∈ T (y, λ0), then
the similar inequality (8) must be preserved for all yα ∈ K (xα, μα), tα ∈ T (yα, λα) corre-
sponding to some net {(xα, μα, λα)} with (xα, μα, λα) → (x0, μ0, λ0).

Now we give an example to show that the condition (ii) in Theorem 4.1 is indispensable.

Example 4.3 Let
∧ = M = (−1, 1), X = R, Y = R2, (μ0, λ0) = (0, 0) ∈ ∧ ×M

and C(x) = R2+ for all x ∈ X . Define the set-valued mappings K : X × ∧ → 2X and
T : X × M → 2Y by

T (x, λ) =
{ {(1, �)T ∈ Y : � ∈ [−|λ|, |λ| + 1]}, if x < 1,

{(1, 1 + λ2)T ∈ Y }, if x ≥ 1,

and

K (x, μ) =
⎧
⎨

⎩

{χ ∈ X : χ ∈ [1, 2x − 1]}, if x ≥ 1,

{χ ∈ X : χ ∈ [x, 1 + |μ|]}, if 0 ≤ x < 1,

{0}, if x < 0.
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After computation, S(μ0, λ0) = (−∞, 0] ∪ {1} and S(μ, λ) = {1} for all (μ, λ) ∈ ∧ ×M
and (μ, λ) �= (μ0, λ0), E(μ) = R for all μ ∈ ∧

. Therefore, E(·) is B-l.s.c on
∧

and S(·, ·)
is not B-l.s.c at (μ0, λ0). It is easy to check that Theorem 4.1(ii) is not satisfied. In fact, taking
(xn, μn, λn) = (1 + 1

n , 1
n , 1

n ), n ∈ N . Then, (xn, μn, λn) → (1, 0, 0) as n → ∞ and

〈t, y − x0〉 �∈ −intR2+, ∀y ∈ K (1, 0), t ∈ T (y, 0).

However, there exist yn ∈ K (xn, μn) and tn = (1, 1 + 1
n2 ) ∈ T (1, λn) such that

〈tn, yn − xn〉 =
(

− 1

n
,− 1

n

(

1 + 1

n2

))T

∈ −intR2+, ∀n ∈ N .

If the conditions in Theorem 4.1 are strengthened, then we can get the Hausdorff lower
semicontinuity of the solution mapping S(·, ·).
Theorem 4.4 For any given (μ0, λ0) ∈ ∧ ×M, if the following conditions are satisfied:

(i) E(·) is B-l.s.c with compact values on
∧

.
(ii) For any x0 ∈ K (x0, μ0), (xα, μα, λα) → (x0, μ0, λ0) and

〈t, y − x0〉 �∈ −intC(x0), ∀y ∈ K (x0, μ0), t ∈ T (y, λ0)

implies that there exists α such that

〈tα, yα − xα〉 �∈ −intC(xα), ∀yα ∈ K (xα, μα), tα ∈ T (yα, λα).

Then the solution mapping S(·, ·) is H-l.s.c at (μ0, λ0).

Proof By Theorem 4.1, we know that the solution mapping S(·, ·) is B-l.s.c at (μ0, λ0).
Taking into account Lemma 2.7 and condition (i) that S(μ0, λ0) is compact. It follows from
Lemma 2.8 that S(·, ·) is H-l.s.c at (μ0, λ0). ��

By the nonlinear scalarization function ξe, we introduce the following so-called “gap”
function. Suppose that K (x, μ) is a compact set for each (x, μ) ∈ X × ∧

, T (x, λ) is also a
compact set for each (x, λ) ∈ X × M, V (·) =: Y \ intC(·) and C(·) are B-u.s.c on X . Define
a function g : ∧ ×M × X → R by

g(μ, λ, x) =: min
t∈T (y,λ),y∈K (x,μ)

ξe(x, 〈t, y − x〉), ∀x ∈ E(μ). (11)

Since K (x, μ) and T (x, λ) are compact sets and ξe(·, ·) is continuous, then g(μ, λ, x) is
well defined. We shall use the function g(μ, λ, x) to establish the lower semicontinuity of
the solution mapping of (PGMVQVI). Firstly, we study the properties of the function g(·, ·, ·),
and relations between g(·, ·, ·) and the solution mapping S(·, ·).

Lemma 4.5 (i) g(μ0, λ0, x0) = 0 if and only if x0 ∈ S(μ0, λ0);
(ii) g(μ, λ, x) < 0 for all x ∈ E(μ) \ S(μ, λ);

(iii) g(μ, λ, x) ≤ 0 for all x ∈ E(μ).

Proof (i) If g(μ0, λ0, x0) = 0, then

g(μ0, λ0, x0) = min
t∈T (y,λ0),y∈K (x0,μ0)

ξe(x0, 〈t, y − x0〉) = 0,
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this shows that

ξe(x0, 〈t, y − x0〉) ≥ 0, ∀y ∈ K (x0, μ0), t ∈ T (y, λ0).

By Proposition 2.3, one has

〈t, y − x0〉 �∈ −intC(x0), ∀y ∈ K (x0, μ0), t ∈ T (y, λ0).

Therefore, x0 ∈ S(μ0, λ0).

Conversely, if x0 ∈ S(μ0, λ0), then

〈t, y − x0〉 �∈ −intC(x0), ∀y ∈ K (x0, μ0), t ∈ T (y, λ0).

From Proposition 2.3, it follows that

ξe(x0, 〈t, y − x0〉) ≥ 0, ∀y ∈ K (x0, μ0), t ∈ T (y, λ0).

Moreover, we have

g(μ0, λ0, x0) = min
t∈T (y,λ0),y∈K (x0,μ0)

ξe(x0, 〈t, y − x0〉) ≥ 0. (12)

Again from Proposition 2.3, one has

g(μ0, λ0, x0) ≤ min
t∈T (x0,λ0)

ξe(x0, 〈t, x0 − x0〉) = 0. (13)

As a consequence, from (12) and (13), we have g(μ0, λ0, x0) = 0.

(ii) For any given x ∈ E(μ), but x �∈ S(μ, λ), there exists ȳ1 ∈ K (x, μ) for all t̄ ∈ T (ȳ1, λ)

or, for all y ∈ K (x, μ), there exists t0 ∈ T (y, λ) such that

〈t̄, ȳ1 − x〉 ∈ −intC(x) (14)

or,

〈t0, y − x〉 ∈ −intC(x). (15)

Taking into account Proposition 2.3 and from (14) and (15) that

ξe(x, 〈t̄, ȳ1 − x〉) < 0, ξe(x, 〈t0, y − x〉) < 0.

Then, for any x ∈ E(μ) \ S(μ, λ),

g(μ, λ, x) = min
t∈T (y,λ),y∈K (x,μ)

ξe(x, 〈t, y − x〉) < 0.

(iii) It directly follows from (i) and (ii). ��
Remark 4.6 If (i) and (iii) of Lemma 4.5 hold, then the function g is called a parametric
gap function for (PGMVQVI). Gap function is an important method for solving variational
inequalities and widely applied in optimization problems, equation problems and so on (see
Chen et al. 2000; Yang and Yao 2002; Li et al. 2006; Noor 2006 and the references therein).

Lemma 4.7 Let E(μ) be nonempty for each μ ∈ ∧
. Assume that the following conditions

are satisfied:

(i) K (·, ·) is B-u.s.c with compact values on X × ∧
;

(ii) T (·, ·) is B-u.s.c with compact values on X × M;
(iii) C(·) is B-u.s.c on X, and e(·) ∈ intC(·) is continuous on X.

Then, g(·, ·, ·) is a lower semicontinuous function.
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Proof By the assumptions and (11), g(μ, λ, x) is finite for any μ ∈ ∧
, λ ∈ M and x ∈

E(μ). Set l ∈ R. Assume that net {(μα, λα, xα)} ⊂ ∧ ×M × X such that (μα, λα, xα) →
(μ0, λ0, x0) and

g(μα, λα, xα) ≤ l, ∀α.

It follows that

min
tα∈T (yα,λα),yα∈K (xα,μα)

ξe(xα, 〈tα, yα − xα〉) ≤ l, ∀xα ∈ E(μα). (16)

Since K is B-u.s.c with compact values at (x0, μ0), x0 ∈ K (x0, μ0). By (16), there exist
ȳα ∈ K (xα, μα) and t̄α ∈ K (ȳα, λα) such that

ξe(xα, 〈t̄α, ȳα − xα〉) ≤ l.

By the upper semicontinuity of K at (x0, μ0) and the compactness of K (x0, μ0), there exists
y0 ∈ K (x0, μ0) such that ȳα → y0 (taking a subnet {ȳβ} of {ȳα} if necessary). Similarly,
there exists t0 ∈ T (y0, λ0) such that t̄β → t0. From Proposition 2.4, it follows that ξe is
lower semicontinuous. Then, we can conclude

ξe(x0, 〈t0, y0 − x0〉) ≤ lim inf
α

ξe(xα, 〈t̄α, ȳα − xα〉) ≤ l.

Therefore, the level set {(μ, λ, x) : g(μ, λ, x) ≤ l} is closed-valued for all l ∈ R and so, g
is lower semicontinuous on

∧ ×M × X. ��
Lemma 4.8 Let E(μ) be nonempty for each μ ∈ ∧

. Assume that the following conditions
are satisfied:

(i) K (·, ·) is B-continuous with compact values on X × ∧
;

(ii) T (·, ·) is B-continuous with compact values on X × M;
(iii) C(·) and V (·) = Y \ intC(·) are B-u.s.c on X, and e(·) ∈ intC(·) is continuous on X.

Then, g(·, ·, ·) is continuous.

Proof By Lemma 4.7, we only need to prove that g is upper semicontinuous, i.e., −g is lower
semicontinuous.

It follows from (i) and (ii) that g(μ, λ, x) is finite for all μ ∈ ∧
, λ ∈ M and x ∈ E(μ).

Taking ι ∈ R. Assume that net {(μα, λα, xα)} ⊂ ∧ ×M × X such that (μα, λα, xα) →
(μ0, λ0, x0) and

−g(μα, λα, xα) ≤ ι, ∀α.

Therefore, one has

− min
tα∈T (yα,λα),yα∈K (xα,μα)

ξe(xα, 〈tα, yα − xα〉) ≤ ι, ∀xα ∈ E(μα),

that is,

max
tα∈T (yα,λα),yα∈K (xα,μα)

−ξe(xα, 〈tα, yα − xα〉) ≤ ι, ∀xα ∈ E(μα). (17)

Since K is B-u.s.c with compact values at (x0, μ0), x0 ∈ K (x0, μ0). From (17), it implies
that

−ξe(xα, 〈tα, yα − xα〉) ≤ ι, ∀yα ∈ K (xα, μα), tα ∈ T (yα, λα).
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By the Berge lower semicontinuity of K at (x0, μ0) and the compactness of K (x0, μ0), for
any y0 ∈ K (x0, μ0), there exists yα ∈ K (xα, μα) such that yα → y0 (taking a subnet
{yβ} of {yα} if necessary). Since T is B-l.s.c with compact values at (y0, λ0), then for any
t0 ∈ T (y0, λ0), there exists tα ∈ T (yα, λα) such that tβ → t0. From Proposition 2.4 and (iii),
it follows that ξe is upper semicontinuous. Thus, we have

−ξe(x0, 〈t0, y0 − x0〉) ≤ lim inf
α

−ξe(xα, 〈t̄α, ȳα − xα〉)
≤ lim sup

α
−ξe(xα, 〈t̄α, ȳα − xα〉) ≤ ι.

Then, the level set {(μ, λ, x) : −g(μ, λ, x) ≤ ι} is closed-valued for all ι ∈ R, and so,
−g is lower semicontinuous. Therefore, g is upper semicontinuous and so continuous on∧ ×M × X. ��

Motivated by the hypothesis (Zhao 1997; Kien 2005, (H1); Li and Chen 2009; Chen et al.
2010, (Hg); Zhong and Huang 2011b, (Hg)′), using the parametric gap function g, we also
introduce the following assumption:

(Hg)′′ For any given (μ0, λ0) ∈ ∧ ×M. For any ε > 0, there exist ρ > 0 and δ > 0
such that, for any (μ, λ) ∈ B((μ0, λ0), δ) and x ∈ �(μ, λ, ε) = E(μ) \ U (S(μ, λ), ε), one
has g(μ, λ, x) ≤ −ρ.

Remark 4.9 It is easy to see that, if
∧

is the same as M , and
∧

is a metric space, C(x) ≡ C
for all x ∈ X , and μ = λ, then the hypothesis (Hg)′′ is reduced to the hypothesis (Hg)′
(Zhong and Huang 2011b) in the sense of presentation form.

Remark 4.10 As pointed out in Zhao (1997), the above hypothesis (Hg)′′ is characterized
by a common theme used in mathematical analysis. Such a theme interprets a proposition
associated with a set in terms of other propositions related with the complement set. Instead
of looking for restrictions within the solution set, the hypothesis (Hg)′′ puts restrictions on
the behavior of the parametric gap function on the complement of solution set. As showed in
Chen et al. (2010), the hypothesis (Hg)′′ seems to be reasonable in establishing the Hausdorff
lower semicontinuity and Hausdorff continuity of S(·, ·) (see Li and Chen 2009; Zhao 1997;
Chen et al. 2010; Zhong and Huang 2011b). But the hypothesis (Hg)′′ includes the solution
information S(μ, λ) for all (μ, λ) in a neighborhood of (μ0, λ0), which may not be verified.
Inspired by Zhong and Huang (2011b), we give an equivalence formulation of (Hg)′′.

Lemma 4.11 Assume that all conditions in Lemma 4.8 are satisfied. Let ε > 0
and φε(μ, λ) = supx∈�(μ,λ,ε) g(μ, λ, x). Then (Hg)′′ holds iff, for every ε > 0,
lim sup(μ,λ)→(μ0,λ0) φε(μ, λ) < 0.

Proof The proof is similar to that of Zhong and Huang (2011b, Lemma 2.8), and so it is
omitted here. ��
Theorem 4.12 Assume that the following conditions are satisfied:

(i) E(·) is B-l.s.c with compact values on
∧

;
(ii) K (·, ·) is B-continuous with compact values on X × ∧

;
(iii) T (·, ·) is B-continuous with compact values on X × M;
(iv) C(·) is B-u.s.c on X, and e(·) ∈ intC(·) is continuous on X;
(v) W (·) = Y \ −intC(·) is closed on X.

Then the solution mapping S(·, ·) is H-l.s.c on
∧×M if and only if (Hg)′′ holds.
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Proof We first prove the sufficiency by the method of Chen et al. (2010). Assume that (Hg)′′
holds. Suppose to the contrary that there exist some (μ0, λ0) ∈ ∧ ×M such that the solution
mapping S is not H-l.s.c at (μ0, λ0). Then there exist a neighborhood B0 of 0X , and nets
{(μα, λα)} ⊂ ∧×M with (μα, λα) → (μ0, λ0) and {xα} such that

xα ∈ S(μ0, λ0) \ (S(μα, λα) + B0). (18)

By Corollary 3.4, S(μ0, λ0) is a compact set. Without loss of generality, assume that xα →
x0 ∈ S(μ0, λ0). For B0, there exists a balanced open neighborhood ©(ε) of 0X , where ε > 0,
such that ©(ε) + ©(ε) + ©(ε) ⊂ B0. It is easy to check that

(x0 + ©(ε)) ∩ E(μ0) �= ∅, ∀ε > 0.

Since E(·) is B-l.s.c at μ0, there exist some β1 such that

(x0 + ©(ε)) ∩ E(μβ) �= ∅, ∀β ≥ β1.

For a given ε ∈ (0, 1]. Assume that yβ ∈ (x0 + ©(ε)) ∩ E(μβ). We assert that yβ �∈
S(μβ, λβ) + ©(ε). Suppose to the contrary that yβ ∈ S(μβ, λβ) + ©(ε). Then there exists
zβ ∈ S(μβ, λβ) such that yβ − zβ ∈ ©(ε). Note that xα → x0 ∈ S(μ0, λ0). Without loss of
generality, we may assume that xβ − x0 ∈ ©(ε), whenever β is sufficiently large. Therefore,
one has

xβ − zβ = (xβ − x0) + (x0 − yβ) + (yβ − zβ)

∈ ©(ε) + ©(ε) + ©(ε) ⊂ B0.

This yields that xβ ∈ S(μβ, λβ)+ B0, which contradicts (18). Thus, yβ �∈ S(μβ, λβ)+©(ε).

In the light of (Hg)′′, there are two real numbers ρ > 0 and δ > 0 such that, for any
(μβ, λβ) ∈ B((μ0, λ0), δ), and yβ �∈ S(μβ, λβ) + ©(ε), one has

g(μβ, λβ, yβ) ≤ −ρ. (19)

By Lemma 4.7, g is lower semicontinuous. So, for any � > 0,

g(μβ, λβ, yβ) ≥ g(μ0, λ0, y0) − �. (20)

Without loss of generality, assume that � < ρ. Then, from (19) and (20),

g(μ0, λ0, y0) ≤ � − ρ < 0,

that is,

g(μ0, λ0, y0) = min
t∈T (y0,λ0),y∈K (x0,μ0)

ξe(x0, 〈t, y − x0〉) < 0.

Hence, there exist y0 ∈ K (x0, μ0)andt0 ∈ T (y0, λ0) such that

ξe(x0, 〈t0, y0 − x0〉) < 0.

From Proposition 2.3, it follows that

〈t0, y0 − x0〉 ∈ −intC(x0),

which contradicts that x0 ∈ S(μ0, λ0). Hence, S is H-l.s.c on
∧ ×M .

Conversely, suppose to the contrary that S is H-l.s.c on
∧ ×M , but (Hg)′′ is not true. By

Lemmas 4.5 and 4.11, there exists ε0 > 0 such that

lim sup
(μ,λ)→(μ0,λ0)

φε0(μ, λ) = 0.
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Then, there is a sequence {(μn, λn)} with (μn, λn) → (μ0, λ0) as n → ∞ and

lim
n→∞ φε0(μn, λn) = lim

n→∞ sup
x∈�(μn ,λn ,ε0)

g(μn, λn, x) = 0.

Since �(μn, λn, ε0) is a compact set,

lim
n→∞ φε0(μn, λn) = lim

n→∞ max
x∈�(μn ,λn ,ε0)

g(μn, λn, x) = 0. (21)

Then, there is xn ∈ �(μn, λn, ε0) = E(μn) \ U (S(μn, λn), ε0), such that

φε0(μn, λn) = g(μn, λn, xn).

By Lemma 4.8, g is continuous on
∧ ×M × X. This together with (21) yields that

0 = lim
n→∞ g(μn, λn, xn) = g(μ0, λ0, x0).

By virtue of (i), we may assume that xn → x0 with x0 ∈ E(μ0). Then x0 ∈ S(μ0, λ0). Since
S is H-l.s.c on

∧×M , for any z ∈ S(μ0, λ0), there is a sequence {zn} with zn ∈ S(μn, λn)

for all n such that zn → z as n → ∞. In view of xn ∈ �(μn, λn, ε0), one has

‖zn − xn‖ ≥ ε0.

Moreover, we get

ε0 ≤ lim
n→∞ ‖zn − xn‖ = ‖z − x0‖,

that is,

‖z − x0‖ ≥ ε0 > 0, ∀z ∈ S(μ0, λ0).

This together with x0 ∈ S(μ0, λ0) shows that

0 = ‖x0 − x0‖ ≥ ε0 > 0,

which is a contradiction. ��

Example 4.13 Let
∧ = (− 1

2 , 1
2 ), M = (−1, 1), X = R, Y = R2, and let C(x) = R2+ and

e(x) = (1, 1)T ∈ intR2+ for all x ∈ X . Define the set-valued mappings K : X × ∧ → 2X

and T : X × M → 2Y by, for any x ∈ X, μ ∈ M and λ ∈ ∧
,

T (x, λ) =: {(1, �)T : � ∈ [1, 1 + λ2]}, K (x, μ) =:
[

x − μ

2
, 1 − μ

]

.

Then, we have

E(μ) = {x ∈ X : x ∈ K (x, μ)} = [−μ, 1 − μ], ∀μ ∈
∧

.

Clearly, the conditions (i)–(v) of Theorem 4.12 are satisfied. By computation, we get
S(μ, λ) = {−μ} for all (μ, λ) ∈ ∧×M. So, S(·, ·) is H-l.s.c on

∧ ×M.
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Next, we verify the assumption (Hg)′′. Since e(x) = (1, 1)T ∈ intR2+ for all x ∈ X , then,
from Example 2.2, for any (μ, λ) ∈ ∧×M and x ∈ E(μ),

g(μ, λ, x) = min
y∈K (x,μ),t∈T (y,λ)

ξe(x, 〈t, y − x〉)
= min

y∈K (x,μ),t=(1,�)T∈T (y,λ)
max{y − x, �(y − x)}

= min
y∈[ x−μ

2 ,1−μ],1≤�≤1+λ2
max{y − x, �(y − x)}

= − x + μ

2
.

Clearly, g(μ0, λ0, x0) = 0 if and only if x0 ∈ S(μ0, λ0), and so

g(μ, λ, x) = − x + μ

2
≤ −−μ + μ

2
= 0, ∀x ∈ E(μ).

Therefore, g(·, ·, ·) is a parametric gap function for (PGMVQVI).
For any given (μ̄, λ̄) ∈ ∧ ×M and 0 < ε < 1. Put ρ = ε

3 and 0 < δ < ρ, we have, for
any (μ, λ) ∈ B((μ̄, λ̄), δ) and x ∈ �(μ, λ, ε) = E(μ) \ U (S(μ, λ), ε) = [ε − μ, 1 − μ],

g(μ, λ, x) ≤ −ε − μ + μ

2
= − ε

2
≤ −ρ.

Hence, the assumption (Hg)′′ is valid.

Example 4.14 Let
∧ = M = (−1, 1), X = R, Y = R2, and let C(x) = R2+ for all x ∈ X .

Define the set-valued mappings K : X × ∧ → 2X and T : X × M → 2Y by

T (x, λ) =: {(2, |λ|)T}, K (x, μ) =: [−1, 1],∀x ∈ X, μ ∈ M, λ ∈
∧

.

It is easy to see that the conditions (i)–(v) of Theorem 4.12 are satisfied. From simple
computation, one has E(μ) = [−1, 1], for all μ ∈ M , and so

S(μ, λ) =
{ [−1, 1], if λ = 0,

{−1}, if λ �= 0.

Therefore, S(·, ·) is not H-l.s.c at (μ, 0), where μ ∈ (−1, 1). Let us show that the assumption
(Hg)′′ fails to hold at (0, 0). Set e(x) = (1, 1)T ∈ intR2+. Then

g(μ, λ, x) = min
y∈K (x,μ),t∈T (y,λ)

ξe(x, 〈t, y − x〉)
= min

y∈[−1,1] max{2(y − x), |λ|(y − x)}.

It is easy to see that g is a parametric gap function for (PGMVQVI). Since

g(μ, λ, x) ≤ max{2(x − x), |λ|(x − x)} = 0, ∀x ∈ E(μ),

and g(μ, λ, x) = 0 for all x ∈ S(μ, λ). Taking some ε with 0 < ε < 1. For any ρ > 0,
set (μn, λn) → (0, 0) with 0 < |λn | < 1

2ρ and xn = 1 ∈ �(μn, λn, ε) = E(μn) \
U (S(μn, λn), ε), n ∈ N ,

g(μn, λn, xn) = |λn |(−1 − xn) = −2|λn | > −ρ.

Hence, the assumption (Hg)′′ fails to hold at (0, 0).
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If C(x) = C for all x ∈ X and e ∈ intC , then from Theorem 4.12, we obtain the following
corollary.

Corollary 4.15 Assume that the following conditions are satisfied:

(i) E(·) is B-l.s.c with compact values on
∧

;
(ii) K (·, ·) is B-continuous with compact values on X × ∧

;
(iii) T (·, ·) is B-continuous with compact values on X ×M.Then the solution mapping S(·, ·)

is H-l.s.c on
∧ ×M if and only if (Hg)′′ holds.

From Lemma 2.8 and Theorems 3.1 and 4.12, we can get the following result.

Corollary 4.16 Assume that the following conditions are satisfied:

(i) E(·) is B-continuous with compact values on
∧

;
(ii) K (·, ·) is B-continuous with compact values on X × ∧

;
(iii) T (·, ·) is B-continuous with compact values on X × M;
(iv) C(·) is B-u.s.c on X, and e(·) ∈ intC(·) is continuous on X;
(v) W (·) = Y \ −intC(·) is closed on X.

Then the solution mapping S(·, ·) is B-continuous and H-continuous if and only if (Hg)′′
holds.

Remark 4.17 The condition (ii) of Theorem 4.12 and Corollary 4.15 may not imply the Berge
lower semicontinuity of E(·).
Example 4.18 Let

∧ = [−1, 1] and X = R. Define a set-valued mapping K : X ×∧ → 2X

by

K (x, μ) =
⎧
⎨

⎩

{|μ|χ : χ ∈ X, x ≤ χ ≤ −x}, if x ≤ −1,

{|μ|χ : χ ∈ X,−1 ≤ χ ≤ 1}, if − 1 < x < 1,

{|μ|χ : χ ∈ X,−x ≤ χ ≤ x}, if x ≥ 1.

Obviously, K (·, ·) is B-continuous with compact values on X×∧
. But the set-valued mapping

E(μ) = {x ∈ X : x ∈ K (x, μ)}
=

{
R, if μ = 1,−1,

{χ : χ ∈ X,−|μ| ≤ χ ≤ |μ|}, if − 1 < μ < 1,

is not B-l.s.c at μ = 1, or μ = −1.

5 An application

In this section, let the Hausdorff topological space
∧

be the same as M , A be a nonempty,
closed and convex subset of a locally convex Hausdorff topological vector spaces X , and
C(x) = C be closed convex cone with nonempty interior for all x ∈ X. We discuss the
solution stability for a class of parametric vector quasivariational inequality of the Minty
type.

Consider the following parametric vector quasivariational inequality problem [in short
(PVQI)]: find x ∈ K (x, μ) ∩ A such that

〈t, y − x〉 �∈ −intC, ∀y ∈ K (x, μ), t ∈ T (y, μ). (22)
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Denote the solution set of (PVQI) by S(μ). Assume that K (x, μ) ∩ A �= ∅ for all (x, μ) ∈
X × ∧

.
If C = R+,

∧
is a nonempty closed subset of Rn and A is a nonempty, closed and convex

subset of Rm , K : Rm × ∧ → 2Rm
and T : Rm × ∧ → 2Rm

are both set-valued mappings
with K being a closed-valued mapping, then (PVQI) reduces to the following parametric
quasivariational inequality of the Minty type [in short (PQI)] corresponding to a parameter
μ0 ∈ ∧

: find x0 ∈ K (x0, μ0) ∩ A such that

〈t, x0 − y〉 ≤ 0, ∀y ∈ K (x0, μ0), t ∈ T (y, μ0), (23)

which was considered by Lalitha and Bhatia (2011).

Theorem 5.1 Let A be a nonempty compact subset of X. For μ0 ∈ ∧
, if the following

conditions are satisfied:

(i) E(·) is B-u.s.c with compact values at μ0;
(ii) For any x0 ∈ K (x0, μ0), (xα, μα) → (x0, μ0) and

〈t0, y0 − x0〉 ∈ −intC for some y0 ∈ K (x0, μ0), t0 ∈ T (y0, μ0)

implies that there exists α such that

〈tα, yα − xα〉 ∈ −intC for some yα ∈ K (xα, μα), tα ∈ T (yα, μα).

Then the solution mapping S(·) is B-u.s.c at μ0. Further, S(·) is H-u.s.c at μ0.

Proof It directly follows from Theorem 8 of Aubin and Ekeland (1984, Sect. 1, Chap. 3) and
Theorem 3.5. ��

Theorem 5.2 Let A be a nonempty compact subset of X. For μ0 ∈ ∧
, if the following

conditions are satisfied:

(i) E(·) is B-u.s.c with compact values at μ0;
(ii) K (·, ·) is B-l.s.c on X × {μ0};

(iii) T (·, ·) is B-l.s.c with compact values on X × {μ0}.

Then the solution mapping S(·) is B-u.s.c at μ0. Moreover, S(·) is H-u.s.c at μ0.

Proof It directly follows from Theorem 8 of Aubin and Ekeland (1984, Sect. 1, Chap. 3) and
Theorem 3.1. ��

Remark 5.3 Theorem 5.1 extends Theorem 3.2 of Lalitha and Bhatia (2011) in the following
aspects:

(i) The underlying space and the objective space are both extended from Rn and (Rm) to
Hausdorff topological vector spaces, respectively.

(ii) The parametric quasivariational inequality problem (PQI) is extended to the parametric
vector quasivariational inequality problem (PVQI).
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6 Conclusions

In this paper, under some suitable assumptions, the Berge (Hausdorff) upper semicontinuity,
Berge lower semicontinuity and closedness of the solution set mapping for the (PGMVQVI)
are established in Hausdorff topological vector spaces. Secondly, a parametric gap function
is introduced for the (PGMVQVI). Using the assumption (Hg)′′ and parametric gap function,
sufficient and necessary conditions of the Hausdorff lower semicontinuity and Hausdorff
continuity of the solution set mapping for the (PGMVQVI) are derived without monotonicity.
In the end, we also obtain the Berge (Hausdorff) upper semicontinuity of the solution set
mapping for a (PVQI), which is a generalization of the model discussed in Lalitha and Bhatia
(2011). Referees point out that our results can be applied to general variational inequalities
(Noor 1998, 2000, 2004, 2006). In further research, we may study the following two questions:

Question I If the solution set mapping S of the (PGMVQVI) is B-u.s.c (H-u.s.c) at some
point (μ, λ) ∈ ∧ ×M , does the condition (ii) of Theorem 3.5 hold?

Question II If the solution set mapping S of the (PGMVQVI) is B-l.s.c at some point
(μ, λ) ∈ ∧ ×M , does the condition (ii) of Theorem 4.1 hold?
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