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Abstract In this paper, bilevel invex equilibrium problems of Hartman-Stampacchia
type and Minty type [resp., in short, (HSBEP) and (MBEP)] are firstly introduced in
finite Euclidean spaces. The relationships between (HSBEP) and (MBEP) are pre-
sented under some suitable conditions. By using fixed point technique, the nonempti-
ness and compactness of solution sets to (HSBEP) and (MBEP) are established under
the invexity, respectively. As applications, we investigate the existence of solution and
the behavior of solution set to the bilevel pseudomonotone variational inequalities of
[Anh et al. J Glob Optim 2012, doi:10.1007/s10898-012-9870-y] and the solvability
of minimization problem with variational inequality constraint.
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1 Introduction

The equilibrium problem, which was first introduced by Blum and Oettli [5], provides a
unified model of many problems such as optimization problems, variational inequality
problems, complementarity problems, fixed point problems and so on. Subsequently,
equilibrium and generalized different types of equilibrium problems were intensively
studied (see, e.g., [3,4,7–10,20] and the references therein). Let H be a Hilbert space
and D be a nonempty closed subset of H, P : D× D → R be a continuous bifunction.
Noor [27,28] introduced and studied the following invex equilibrium (equilibrium-
like) problem: find u ∈ D such that

P(u, η(v, u)) ≥ 0, ∀v ∈ D,

where the mapping η : D × D → D. Thereafter, Noor et al. [29,30] further studied
the invex equilibrium (equilibrium-like) problems in different ways. They pointed out
that the invex equilibrium problem contained variational-like inequalities, equilibrium
problems and variational inequalities as special cases. Guu and Li [19] also studied
this class of problem in the setting of the vector-valued case, but they did not use
the term invex equilibrium problem. The relationships between vector variational-
like inequalities and vector optimization problems were established under the some
suitable assumptions. That is, the invex equilibrium problem is closely related to the
optimization problem.

For the past decades, mathematical programs with variational inequality, equilib-
rium and complementarity constraints have attracted many scholars’ interests (see,
e.g., [4,18,22–25,31,32] and references therein). In 2010, Moudafi [26] introduced a
class of bilevel equilibrium problem [for short, (BEP)]: find x ∈ SF such that

H(x, y) ≥ 0, ∀y ∈ SF ,

where SF is the solution set of the following equilibrium problem: find u ∈ K such
that

F(u, y) ≥ 0, ∀y ∈ K ,

where K is a nonempty closed convex subset of a Hilbert space, and H, F :
K × K → R are two functions. He pointed out that this class is interesting since
it includes hierarchical optimization problems, optimization problems with equilib-
rium, variational inequalities and complementarity constraints as special cases. By
using the proximal method, an iterative algorithm to compute approximate solution
of the (BEP) and the weak convergence of the iterative sequence generated by the
algorithm were suggested and derived, respectively. Motivated by Moudafi’s works
[26], Ding [11,12] considered the following bilevel mixed equilibrium problem [for
short, (BMEP)] [(1.1),(1.2)] in reflexive Banach spaces: find x ∈ S�,ψ such that

h(x, y)+ φ(y, x)− φ(x, x) ≥ 0, ∀y ∈ S f,ψ , (1.1)

where S f,ψ is the solution set of the following mixed equilibrium problem: find
y ∈ K such that
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f (y, z)+ ψ(z, y)− ψ(y, y) ≥ 0, ∀z ∈ K , (1.2)

where E is a real Banach space with its dual space E∗, the norm and the dual pair
between E and E∗ are denoted by ‖ · ‖ and 〈·, ·〉, respectively. Let K be a nonempty
closed convex subset of E , h, f : K × K → R ∪ {+∞} and let φ,ψ : E × E →
R ∪ {+∞} be functions. Ding [11,12] studied the existence of solution and iterative
algorithms for (BMEP) [(1.1), (1.2)]. Since then, Anh et al. [1,2], Chadli, Mahdioui
and Yao[6], Ding [13,14], Liou and Yao [15] and Dinh and Muu [16] continued to
study the (BEP) on existence, well-posedness and algorithm aspects in the setting of
convexity. However, in many cases, it is difficult to ensure the convexity.

Throughout this paper, let Rn be n-dimensional Euclidean space, K be a nonempty
subset of Rn,K a closed convex subset of Rn with K ⊆ K, and let η : K × K →
Rn,�,� : K × K → R ∪ {+∞} be functions. We denote co and clco by the convex
hull and the closed convex hull, respectively.

Motivated and inspired by the above works, we consider the following bilevel
invex equilibrium problem of Hartman-Stampacchia type [for short, (HSBEP)]: find
x ∈ SH S such that

�(x, η(y, x)) ≥ 0, ∀y ∈ SH S, (1.3)

where SH S is the solution set of the lower level invex equilibrium problem: find y∗ ∈ K
such that

�(y∗, η(z, y∗)) ≥ 0, ∀z ∈ K , (1.4)

where K is an invex subset of Rn .
Denote the solution set of (HSBEP) [(1.3), (1.4)] by ℵH S .
We also consider the following bilevel invex equilibrium problem of Minty type [for

short, (MBEP)]: find x ∈ SM such that

�(y,−η(y, x)) ≤ 0, ∀y ∈ SM , (1.5)

where SM is the solution set of the lower level mixed equilibrium problem: find y∗ ∈ K
such that

�(z,−η(z, y∗)) ≤ 0, ∀z ∈ K . (1.6)

Denote the solution set of (MBEP) [(1.5), (1.6)] by ℵM .
We first recall some definitions and lemmas which are needed in the main results

of this work.

Definition 1.1 [28] K is said to be η-connected if, for any x, y ∈ K and t ∈ [0, 1],
x + tη(y, x) ∈ K .

Remark 1.1 If K is η-connected, we also say K is an invex set with respect to η.
Moreover, any convex set is an invex set with respect to η(x, y) = x − y.
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Definition 1.2 The bifunction � is said to be

(i) η-pseudomonotone on K if, for any x, y ∈ K ,

�(y, η(x, y)) ≥ 0 ⇒ �(x,−η(x, y)) ≤ 0;

(ii) strictly η-pseudomonotone on K if, for any x, y ∈ K ,

�(y, η(x, y)) ≥ 0 ⇒
{
�(x,−η(x, y)) < 0, if x �= y,
�(x,−η(x, y)) ≤ 0, otherwise.

It is easy to see that the strict η-pseudomonotonicity implies the η-pseudomo-
notonicity. But the converse is not true. If η(x, y) = x − y for all x, y ∈ Rn , then
the η-pseudomonotonicity is reduced to the pseudomonotonicity of Lalitha and Mehta
[21].

Example 1.1 Let K = [0, 1], and let η(x, y) = cos x − cos y, �(y, η(x, y)) =
〈sin y − 1, cos x − cos y〉 for all x, y ∈ K . It is easy to verify that �(y, η(x, y)) =
〈sin y − 1, cos x − cos y〉 ≥ 0 whenever y ≤ x . Note that for each x, y ∈ K , y ≤
x, sin x − 1 < 0 and cos y − cos x ≥ 0. Then

�(x,−η(x, y)) = 〈sin x − 1, cos y − cos x〉 ≤ 0, ∀x, y ∈ K , y ≤ x .

This implies that � is η-pseudomonotone on K . Clearly, � is also strictly η-
pseudomonotone on K . Indeed, if x, y ∈ K , y < x , then sin x−1 < 0, cos y−cos x >
0 and so,

�(x,−η(x, y)) = 〈sin x − 1, cos y − cos x〉 < 0.

Example 1.2 Let K = [−1, 1] and let η,� be the same as Example 1.1. It is easy to
verify that �(y, η(x, y)) = 〈sin y − 1, cos x − cos y〉 ≥ 0 whenever |y| ≤ |x |. Note
that for each x, y ∈ K , |y| ≤ |x |, sin x − 1 < 0 and cos y − cos x ≥ 0. Then

�(x,−η(x, y)) = 〈sin x − 1, cos y − cos x〉 ≤ 0, ∀x, y ∈ K , |y| ≤ |x |.

Therefore,� is η-pseudomonotone on K . But� is not strictly η-pseudomonotone on
K . Indeed, if y = −1 < x = 1, then sin x − 1 < 0, cos y − cos x = 0 and so,

�(x,−η(x, y)) = 〈sin x − 1, cos y − cos x〉 = 0.
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Definition 1.3 [19] The function x �→ η(x, ·) is said to be

(i) Rn+-convex if, for any x j ∈ K ( j = 1, 2, . . . ,m) and t j ∈ [0, 1] with∑m
j=1 t j = 1,

η

⎛
⎝ m∑

j=1

t j x j , ·
⎞
⎠ ∈

m∑
j=1

t jη(x j , ·)− Rn+;

(ii) affine if, for any x j ∈ K ( j = 1, 2, . . . ,m) and t j ∈ [0, 1] with
∑m

j=1 t j = 1,

η

⎛
⎝ m∑

j=1

t j x j , ·
⎞
⎠ =

m∑
j=1

t jη(x j , ·).

Definition 1.4 [19] Let K be η-connected. The bifunction � is said to be η-
hemicontinuous on K if, for any x, y ∈ K and t ∈ [0, 1], the mapping t �→
�(x + tη(y, x),−η(y, x)) is continuous at 0+.

Remark 1.2 If η(x, y) = x − y for all x, y ∈ K, then the η-hemicontinuity reduces
to hemicontinuity.

Definition 1.5 [19] The bifunction � is said to be

(i) subodd if, for any x ∈ K and d ∈ Rn ,

�(x, d)+�(x,−d) ≥ 0;

(ii) generalized subodd if, for any x ∈ K and d j ∈ Rn( j = 1, 2, . . . ,m) with∑m
j=1 d j = 0,

m∑
j=1

�(x, d j ) ≥ 0.

It easily follows from Definition 1.5 that if� is generalized subodd, then� is sub-
odd. For example, we put �(x, y) = 〈ex , y〉 for all x, y ∈ Rn . Then � is generalized
subodd.

Definition 1.6 [30] Let K be η-connected (i.e., invex with respect to η). A function
f : K → R is said to be invex with respect to η if,

f (y1 + tη(y2, y1)) ≤ t f (y2)+ (1 − t) f (y1) ∀y1, y2 ∈ K , t ∈ (0, 1).

Definition 1.7 [24] Let g : Rn → R. g is said to be positively homogeneous if,
g(λx) = λg(x) for all x ∈ Rn and λ > 0.
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Definition 1.8 [17] A set-valued mapping T : K → 2Rn
is said to be

(i) closed if its graph, denoted by Gr(T ) = {(x, ζ ) ∈ K × Rn : ζ ∈ T (x)}, is closed
in Rn × Rn;

(ii) KKM mapping if, for each finite subset {x1, x2, . . . , xm} of K , co{x1, x2, . . . , xm}
is contained in

⋃m
j=1 T (x j ), where co denotes the convex hull.

Lemma 1.1 (Fan-KKM theorem [17]) Let T : K → 2Rn
be a KKM mapping such

that for any x ∈ K , T (x) is closed and T (x∗) is bounded for some x∗ ∈ K . Then
there exists y∗ ∈ K such that y∗ ∈ T (x) for all x ∈ K , i.e.,

⋂
x∈K T (x) �= ∅.

2 Main results

In this section, we shall investigate the relationships between (HSBEP) and (MBEP),
and the existence of solutions to (HSBEP) and (MBEP) under some suitable conditions.

Lemma 2.1 (i) If � is η-pseudomonotone on K , then SH S ⊆ SM ;
(ii) If K is an invex set with respect to η, η(y + tη(z, y), y) = tη(z, y) for any

y, z ∈ K and t ∈ (0, 1) and � is positively homogeneous with respect to the
second argument, subodd and η-hemicontinuous on K , then SM ⊆ SH S.

Proof (i) By the η-pseudomonotonicity of �, we can derive the desired result.
(ii) Assume that y∗ ∈ SM . Then y∗ ∈ K and

�(z,−η(z, y∗)) ≤ 0, ∀z ∈ K .

Since K is an invex set with respect to η, we obtain that z + tη(z, y∗) ∈ K for all
z ∈ K and t ∈ (0, 1). This, together with η(y∗ + tη(z, y∗), y∗) = tη(z, y∗) and
positive homogeneity of � with respect to the second argument, yields that

0 ≥ �(y∗+tη(z, y∗),−1

t
η(y∗ + tη(z, y∗), y∗))

= �(y∗+tη(z, y∗),−η(z, y∗)). (2.1)

By the η-hemicontinuity of �, taking the limit in (2.1) as t → 0+, one has

�(y∗,−η(z, y∗)) ≤ 0. (2.2)

In view of the suboddness of �, we get

�(y∗, η(z, y∗))+�(y∗,−η(z, y∗)) ≥ 0

and from (2.2),

�(y∗, η(z, y∗)) ≥ 0 ∀z ∈ K .

Therefore, y∗ ∈ SH S . This completes the proof. ��
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Remark 2.1 Compared with Theorem 2.1 of Guu and Li [19], the conditionη(z, z) = 0
for all z ∈ K is removed.

The following result is a direct consequence of Lemma 2.1.

Corollary 2.1 Let K be an invex set with respect toη andη(y+tη(z, y), y) = tη(z, y)
for all y, z ∈ K and t ∈ (0, 1), and let � be subodd, η-pseudomonotone and η-
hemicontinuous on K . Then SH S = SM .

Lemma 2.2 Assume that all conditions of Corollary 2.1 are satisfied. If � is sub-
odd, η-pseudomonotone and η-hemicontinuous on K . Then (HSBEP) [(1.3), (1.4)] is
equivalent to (MBEP) [(1.5), (1.6)].

Proof From Corollary 2.1, one has SH S = SM . The rest of the proof is similar to the
proof of Lemma 2.1 and so it is omitted here. This completes the proof.

Theorem 2.1 Let K ⊆ Rn be a nonempty closed and invex set with respect to η with
η(x, x) = 0 for all x ∈ K and η(y + tη(z, y), y) = tη(z, y) for all y, z ∈ K and
t ∈ (0, 1). Assume that the following conditions hold:

(i) η is affine with respect to the first argument, and continuous with respect to the
second argument;

(ii) � and � are positively homogeneous and continuous with respect to the second
argument, and η-pseudomonotone, generalized subodd and η-hemicontinuous
on K;

(iii) For each y, z ∈ K , the functions �(y,−η(y, ·)) and �(z,−η(z, ·)) are invex
with respect to the η on K ;

(iv) There exists a nonempty closed bounded convex set 	 ⊆ K such that for each
y ∈ K\	, there exists z ∈ 	 that satisfies �(z,−η(z, y)) > 0.

(v) Further, assume that there exists a nonempty closed bounded convex set

 ⊆ SH S such that for each x ∈ SH S\
, there exists ỹ ∈ 
 that satisfies
�(ỹ,−η(ỹ, x)) > 0.

Then ℵH S and ℵM are two nonempty compact and invex sets with respect to η.

Proof From Corollary 2.1 and Lemma 2.2, one has SH S = SM and ℵH S = ℵM . This,
together with (iv) and (v), implies that SH S = SM ⊆ 	 and ℵH S = ℵM ⊆ 
.

Let us show that SH S and SM are nonempty and closed. For any sequence {ym} ⊆
SM with ym → y0, we have ym ∈ K and

�(z,−η(z, ym)) ≤ 0, ∀z ∈ K . (2.3)

By the continuity of η and� with respect to the second argument, and from (2.3), one
has y0 ∈ K and

�(z,−η(z, y0)) ≤ 0, ∀z ∈ K ,

that is, y0 ∈ SM . Therefore, SM and SH S are closed and so are compact. In order to
prove that SM �= ∅, we define a set-valued mapping H : K → 2K by

H(z) = {y ∈ 	 : �(z,−η(z, y)) ≤ 0}, ∀z ∈ K .
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Similarly, for each z ∈ K , H(z) is closed and so is bounded, since	 is bounded. More-
over, for each z ∈ K , H(z) is compact. Clearly, SH S = SM = ⋂

z∈K H(z). We only
need to prove that

⋂
z∈K H(z) �= ∅. It is sufficient to show that {H(z)}z∈K satisfies the

finite intersection property. Let {z1, z2, . . . , zm} ⊆ K and L = clco[{z1, z2, . . . , zm}∪
	]. Since	 is a nonempty closed bounded convex subset of K , L is a nonempty closed
bounded convex set, that is, L is a nonempty compact and convex set. Again from the
closedness and convexity of K and K ⊆ K, one has L ⊆ K.

Define two set-valued mappings E, F : L → 2L by, respectively,

E(z) = {y ∈ L : �(z,−η(z, y)) ≤ 0}, ∀z ∈ L (2.4)

and

F(z) = {y ∈ L : �(y, η(z, y)) ≥ 0}, ∀z ∈ L . (2.5)

By the η-pseudomonotonicity of�, we can get that E(z) ⊇ F(z) for all z ∈ L . In the
light of η(z, z) = 0 for all z ∈ K , from the positive homogeneity of� with respect to
the second argument, one has

�(z,−η(z, z))=�(z, 0)=�(z,−λη(z, z))=λ�(z,−η(z, z)), ∀z ∈ L , λ>0, λ �=1.

Thus, �(z,−η(z, z)) = �(z, 0) = 0. This implies that for each z ∈ L , z ∈ E(z).
Similarly, for each z ∈ L , z ∈ F(z). Therefore, E(z) �= ∅ and F(z) �= ∅ for all
z ∈ L . Next, we show that F is a KKM mapping. Suppose that there exist a finite
subset {z1, z2, . . . , zm} of L and z∗ ∈ co{z1, z2, . . . , zm}, which means that there exist
t j ≥ 0( j = 1, 2, . . . ,m) with

∑m
j=1 t j = 1 that satisfy z∗ = ∑m

j=1 t j z j , such that
z∗ �∈ ⋃m

j=1 F(z j ). Since L is a convex subset of K, z∗ ∈ L . By (2.5), one has

�(z∗, η(z j , z∗)) < 0, j = 1, 2, . . . ,m.

Moreover, we have

m∑
j=1

t j�(z
∗, η(z j , z∗)) < 0.

Again, from the positive homogeneity of � with respect to the second argument and
affinity of η with respect to the first argument, we obtain

�(z∗, 0)=�(z∗, η(z∗, z∗))=�
⎛
⎝z∗,

m∑
j=1

t jη(z j , z∗)

⎞
⎠=

m∑
j=1

t j�(z
∗, η(z j , z∗))<0,

which contradicts�(z∗, 0) = 0. So, F is a KKM mapping. In view of E(z) ⊇ F(z) for
all z ∈ L , we conclude that E is also a KKM mapping. Since η and � are continuous
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with respect to the second argument, for each z ∈ L , E(z) is closed and so is bounded.
Then, from Lemma 1.1,

⋂
z∈L E(z) �= ∅, i.e., there exists y∗ ∈ L such that

�(z,−η(z, y∗)) ≤ 0, ∀z ∈ L .

It follows from (iv) that y∗ ∈ 	 and y∗ ∈ H(z j ), j = 1, 2, . . . ,m. Therefore, H
has the finite intersection property and so,

⋂
z∈K H(z) �= ∅. Then SH S = SM �= ∅.

Let y∗
1 , y∗

2 ∈ SM and t ∈ (0, 1). Put yt = y1 + tη(y2, y1) ∈ K . Since for each
z ∈ K , �(z,−η(z, ·)) is invex with respect to η on K , one has

�(z,−η(z, yt )) = �(z,−η(z, y1 + tη(y2, y1)))

≤ t�(z,−η(z, y2))+ (1 − t)�(z,−η(z, y1)) ≤ 0,

i.e.,

�(z,−η(z, yt )) ≤ 0, ∀z ∈ K .

Consequently, SM and SH S are invex subsets of K with respect to η. To sum up, SH S

and SM are two nonempty compact and invex sets with respect to η. Similarly, we can
conclude that ℵH S and ℵM are two nonempty compact and invex sets with respect to
η. This completes the proof. ��
Remark 2.2 In Theorem 2.1, K ⊆ Rn is an invex set with respect to η but not convex.
We can not directly establish the existence of solutions for (HSBEP) and (MBEP) by
using the Fan-KKM theorem. In view of this, we consider a convex subset K of Rn

with K ⊆ K.

Theorem 2.2 Assume that all conditions of Theorem 2.1 are satisfied. Let η(x, y)+
η(y, x) = 0 for all x, y ∈ K and � be strictly η-pseudomonotone on K. Then ℵH S

and ℵM are two singletons.

Proof By Theorem 2.1, ℵH S and ℵM are two nonempty compact and invex sets with
respect to η and so, ℵH S = ℵM . Let us show that ℵH S and ℵM are two singletons.
Suppose to the contrary that there exist x1, x2 ∈ ℵH S with x1 �= x2. Then x1, x2 ∈ SH S ,

�(x1, η(y, x1)) ≥ 0, ∀y ∈ SH S (2.6)

and

�(x2, η(y, x2)) ≥ 0, ∀y ∈ SH S . (2.7)

Substituting y = x2 and y = x1 into (2.6) and (2.7), respectively, we have

�(x1, η(x2, x1)) ≥ 0 (2.8)

and

�(x2, η(x1, x2)) ≥ 0. (2.9)
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Since � is strictly η-pseudomonotone on K , and from (2.9),

�(x1,−η(x1, x2)) < 0.

Owing to η(x, y) + η(y, x) = 0 for all x, y ∈ K. Then η(x1, x2) + η(x2, x1) = 0,
i.e., η(x2, x1) = −η(x1, x2). Thus

�(x1, η(x2, x1)) < 0,

which contradicts (2.8). This completes the proof. ��
In particular, if the lower invex equilibrium problems of (HSBEP) and (MBEP)

have unique solutions, then (HSBEP) and (MBEP) also have unique solutions.

Theorem 2.3 Assume that all conditions of Theorem 2.1 are satisfied. Let η(x, y)+
η(y, x) = 0 for all x, y ∈ K and � be strictly η-pseudomonotone on K. Then ℵH S

and ℵM are two singletons.

Proof From Theorem 2.1, ℵH S and ℵM are nonempty. So, SH S and SM are nonempty.
By the similar proof of that of Theorem 2.2, we can conclude that SH S and SM are
two singletons. Without loss of generality, let SH S = SM = {y∗}. Since η(x, y) +
η(y, x) = 0 for all x, y ∈ K, one has η(y∗, y∗) = 0. Taking into account the positive
homogeneity of � with respect to the second argument,

�(y∗, η(y∗, y∗)) = �(y∗, 0) = �(y∗, λη(y∗, y∗)) = λ�(y∗, η(y∗, y∗)), ∀λ > 0, λ �= 1.

Moreover, one has �(y∗, η(y∗, y∗)) = 0. Therefore, ℵH S = ℵM = {y∗}. This
completes the proof. ��
Example 2.1 Let Rn = R = (−∞,+∞), K = K = [−1, 1], η(x, y) = x−y

2 for
all x, y ∈ K, and let �(x, η(y, x)) = 〈2x, y−x

2 〉 = x(y − x) and �(y, η(z, y)) =
〈y, z−y

2 〉 = yz−y2

2 for all x, y, z ∈ K . Then K is invex with respect to η. Put 	 =

 = {0}. It is easy to check that all conditions of Theorems 2.2 and 2.3 are satisfied.
After computation, ℵH S = ℵM = {0}.

If η(x, y) = x − y for all x, y ∈ K, then, from Theorems 2.1 and 2.2, the following
results hold:

Corollary 2.2 Let K be a nonempty closed and convex subset of Rn, � and � be
positively homogeneous and continuous with respect to the second argument, and
pseudomonotone, generalized subodd and hemicontinuous on K. Assume that the
following conditions hold:

(i) For each y, z ∈ K , the functions �(y, · − y) and �(z, · − z) are convex on K ;
(ii) There exists a nonempty closed bounded convex set 	 ⊆ K such that for each

y ∈ K\	, there exists z ∈ 	 that satisfies �(z, y − z) > 0;
(iii) There exists a nonempty closed bounded convex set 
 ⊆ SH S such that for each

x ∈ SH S\
, there exists ỹ ∈ 
 that satisfies �(ỹ, x − ỹ) > 0.

Then ℵH S and ℵM are nonempty compact and convex.
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Corollary 2.3 Assume that all conditions of Corollary 2.2 are satisfied. Let � be
strictly pseudomonotone on K. Then ℵH S and ℵM are two singletons.

3 Applications

In this section, we shall apply the obtained results in Sect. 2 to solve bilevel
pseudomonotone variational inequalities which was studied under the assumption
of existence of its solution by Anh et al. [1] from the theory algorithm point of view,
and study a class of minimization problem with variational inequality constraint.

(I) Bilevel pseudomonotone variational inequalities. Let C be a nonempty closed
convex subset of Rn with inner product 〈·, ·〉 and norm ‖ · ‖. Anh et al. [1] studied the
following so-called bilevel variational inequalities (BVI):

find x∗ ∈ Sol(G,C) such that 〈F(x∗), x − x∗〉 ≥ 0, ∀x ∈ Sol(G,C),

(3.1)

where F : Sol(G,C) → Rn, Sol(G,C) is the solution set of the variational
inequality:

find y∗ ∈ C such that 〈G(y∗), y − y∗〉 ≥ 0, ∀y ∈ C, (3.2)

where G : C → Rn .
Let η(z, y) = z − y for all z, y ∈ Rn . Then C is an invex subset of Rn with respect

to the η.

Definition 3.1 [1] Let C be a nonempty subset of Rn , and A : C → Rn be a vector-
valued mapping. A is said to be

(i) monotone if 〈Ay − Az, y − z〉 ≥ 0 for all y, z ∈ C ;
(ii) pseudomonotone if for any y, z ∈ C ,

〈A(y), z − y〉 ≥ 0 ⇒ 〈Az, z − y〉 ≥ 0;

(iii) strictly pseudomonotone on C if for any y, z ∈ C ,

〈A(y), z − y〉 ≥ 0 ⇒ 〈Az, z − y〉 > 0

and A is pseudomonotone on C .

Remark 3.1 Let η(z, y) = z − y and �(y, z − y) = 〈A(y), z − y〉 for all z, y ∈ C .
It is easy to check that the following statements are true:

(i) if A is pseudomonotone on C , then � is also η-pseudomonotone on C ;
(ii) if A is strictly pseudomonotone on C , then � is also strictly η-pseudomonotone

on C .
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Theorem 3.1 Let C be a nonempty closed and convex subset of Rn, G and F be
continuous and pseudomonotone on C. Assume that there exists a nonempty closed
bounded convex set � ⊆ C such that for each y ∈ C\�, there exists z ∈ � that
satisfies 〈G(z), y − z〉 > 0. If there exists a nonempty closed bounded convex set
∇ ⊆ Sol(G,C) such that for each x ∈ Sol(G,C)\∇, there exists ỹ ∈ ∇ that satisfies
〈F(ỹ), x − ỹ〉 > 0, then the solution set of (BVI) is nonempty compact and convex.

Proof Let η(y, x) = y − x,�(x, y − x) = 〈F(x), y − x〉 and�(y, z − y) = 〈G(y),
z − y〉 for all x, y, z ∈ C . For each y, z ∈ C and t ∈ (0, 1), η(y + tη(z, y), y) =
y + t (z − y)− y = t (z − y) = tη(z, y), and moreover, condition (i) of Theorem 2.1 is
satisfied. It is easy to see that conditions (iv) and (v) of Theorem 2.1 are also true. We
only need to prove that the conditions (ii) and (iii) of Theorem 2.1 hold. By the defini-
tion of� and�,� and� are positively homogeneous and continuous with respect to
the second argument. Since G and F be continuous and pseudomonotone on C , from
Remark 3.1, it follows that � and � are η-pseudomonotone and η-hemicontinuous
on C . For any x ∈ C, d j ∈ Rn( j = 1, 2, . . . ,m) and

∑m
j=1 d j = 0,

m∑
j=1

�(x, d j ) =
m∑

j=1

〈F(x), d j 〉 =
〈

F(x),
m∑

j=1

d j

〉
≥ 0

and

m∑
j=1

�(x, d j ) =
m∑

j=1

〈G(x), d j 〉 =
〈

G(x),
m∑

j=1

d j

〉
≥ 0.

That is, � and � are generalized subodd. Note that for each y, z ∈ C,
�(y,−η(y, ·)) = 〈F(y), · − y〉 and �(z,−η(z, ·)) = 〈G(z), · − z〉. Then, for each
y, z ∈ K , the functions �(y,−η(y, ·)) and �(z,−η(z, ·)) are convex on C , i.e.,
�(y,−η(y, ·)) and �(z,−η(z, ·)) is invex with respect to the η on C . To sum up,
all conditions of Theorem 2.1 hold. Therefore, from Theorem 2.1, the solution set of
(BVI) is nonempty compact and convex. This completes the proof. ��
Theorem 3.2 Assume that all conditions of Theorem 3.1 are satisfied. Let F be strictly
pseudomonotone on C. Then the solution set of (BVI) is a singleton.

Proof It immediately follows from Theorems 2.2 and 3.1 and Remark 3.1 (ii). This
completes the proof

(II) Minimization problem with variational inequality constraint Let D be a non-
empty closed and invex subset of R = (−∞,+∞) with respect to the mapping
η : R × R → R, η(x, y) + η(y, x) = 0 for all x, y ∈ D, D be a closed convex
subset of R with D ⊆ D and let the functions f : D → R and g : D → R be
continuously differentiable. Further, we assume that both the functions f and g are
invex with respect to the same η : R × R → R. Now we consider the following
minimization problem with variational inequality constraint (MPEC):

minx∈Sg f (x),
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where Sg is the solution set of the variational inequality:

find x ∈ D such that 〈g(x), η(y, x)〉 ≥ 0, y ∈ D.

Definition 3.2 [3] Let η : R × R → R. g is said to be

(i) monotone with respect to η if, 〈g(y)− g(x), η(y, x)〉 ≥ 0 for all x, y ∈ D;
(ii) strictly monotone with respect to η if, 〈g(y)−g(x), η(y, x)〉 > 0 for all x, y ∈ D.

Lemma 3.1 [27,28] Let f be a differentable function on the invex subset K of R and
η be a bifunction such that η(x, x + tη(y, x)) = −tη(y, x) and η(y, x + tη(y, x)) =
(1 − t)η(y, x) for all x, y ∈ K and t ∈ [0, 1]. Then the following are equivalent:

(i) the function f is invex with respect to η;
(ii) f (y2) − f (y1) ≥ 〈 f ′(y1), η(y2, y1)〉 for all y1, y2 ∈ K , where f ′(y1) is the

differential of f at y1;
(iii) f ′ is monotone with respect to η.

It is easy to obtain the following result from Lemma 3.1.

Lemma 3.2 Assume that all conditions of Lemma 3.1 are satisfied. If f and − f are
invex with respect to η, then x ∈ K is a solution of the problem minx∈K f (x) if and
only if it is a solution of the following variational inequality:

find x ∈ K such that 〈 f ′(x), η(y, x)〉 ≥ 0, ∀y ∈ K .

Now we study the existence of solution of (MPEC) by using Theorem 2.1.

Theorem 3.3 Let η : R × R → R be affine with respect to the first argument, and
continuous with respect to the second argument and D ⊆ R be a nonempty closed and
invex set with respect to η with η(y, y + tη(z, y)) = −tη(z, y), η(z, y + tη(z, y)) =
(1 − t)η(z, y) and η(y + tη(z, y), y) = tη(z, y) for all y, z ∈ D and t ∈ (0, 1).
Assume that the following conditions hold:

(i) f and − f are invex with respect to η;
(ii) For each y, z ∈ D, the functions 〈 f ′(y),−η(y, ·)〉 and 〈g(z),−η(z, y)〉 are invex

with respect to the η on D;
(iii) There exists a nonempty closed bounded convex set W ⊆ D such that for each

y ∈ D\W , there exists z ∈ W that satisfies that 〈g(z),−η(z, ·)〉 > 0;
(iv) There exists a nonempty closed bounded convex set T ⊆ Sg such that for each

x ∈ Sg\T , there exists ỹ ∈ T that satisfies 〈 f ′(ỹ),−η(ỹ, x)〉 > 0.

Then (MPEC) is solvable.

Proof Let �(x, η(y, x)) = 〈 f ′(x), η(y, x)〉 and �(y, η(z, y)) = 〈g(y), η(z, y)〉 for
all x, y, z ∈ D. Note that η is continuous with respect to the second argument, and
η(y, y + tη(z, y)) = −tη(z, y) for all y, z ∈ D and t ∈ (0, 1). From these, we can
derive that η(y, y) = 0 for all y ∈ D. Clearly,� and� satisfy the conditions (ii)–(iv)
of Theorem 2.1 By the same argument of Theorem 2.1, we have that Sg is nonempty
compact and invex with respect to η. Since f and − f are invex with respect to η, from
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Lemma 3.2, we know that x ∈ Sg is a solution of the problem minx∈Sg f (x) if and
only if it is a solution of the variational inequality (VI): find x ∈ Sg such that

�(x, η(y, x)) = 〈 f ′(x), η(y, x)〉 ≥ 0, ∀y ∈ Sg.

That is, (MPEC) is equivalent to the following bilevel equilibrium problem: find x ∈ Sg

such that

�(x, η(y, x)) = 〈 f ′(x), η(y, x)〉 ≥ 0, ∀y ∈ Sg, (3.3)

where Sg is the solution set of the equilibrium as follows: find y ∈ D such that

�(y, η(y, z)) = 〈g(y), η(z, y)〉 ≥ 0, ∀z ∈ D. (3.4)

Clearly, � satisfies all conditions of Theorem 2.1 It follows from Theorem 2.1 that
the bilevel equilibrium problem (3.3) with (3.4) has a solution. Therefore, (MPEC) is
solvable. This completes the proof. ��
Acknowledgments The authors are indebted to the referees and the associate editor for their insightful
and pertinent comments on an earlier version of the work. The first author would like to gratefully thank
Professor Heinz H. Bauschke and Shawn Wang, Mathematics, Irving K. Barber School, UBC Okanagan,
Kelowna, British Columbia, Canada, for their hospitality and providing excellent research facilities.

References

1. Anh, P.N., Kim, J.K., Muu, L.D.: An extragradient algorithm for solving bilevel pseudomonotone
variational inequalities. J. Glob. Optim. (2012). doi:10.1007/s10898-012-9870-y

2. Anh, L.Q., Khanh, P.Q., Van, D.T.M.: Well-posedness under relaxed semicontinuity for bilevel equi-
librium and optimization problems with equilibrium constraints. J. Optim. Theory Appl. (2011).
doi:10.1007/s10957-011-9963-7

3. Agarwal, R.P., Chen, J.W., Cho, Y.J., Wan, Z.: Stability analysis for parametric generalized vec-
tor quasi-variational-like inequality problems. J. Inequal. Appl. 2012, 57 (2012). doi:10.1186/
1029-242X-2012-57

4. Birbil, S.I., Bouza, G., Frenk, J.B.G., Stil, G.: Equilibrium constrained optimization problems. Eur. J.
Oper. Res. 169, 1108–1127 (2006)

5. Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math.
Stud. 63, 123–145 (1994)

6. Chadli, O., Mahdioui, H., Yao, J.C.: Bilevel mixed equilibrium problems in Banach spaces: existence
and algorithmic aspects. Numer. Algebra Control Optim. 1(3), 549–561 (2011)

7. Chen, J.W., Cho, Y.J., Wan, Z.: Shrinking projection algorithms for equilibrium problems with a
bifunction defined on the dual space of a Banach space. Fixed Point Theory Appl. 2011, 91 (2011).
doi:10.1186/1687-1812-2011-91

8. Chen, J.W., Wan, Z., Cho, Y.J.: Nonsmooth multiobjective optimization problems and weak vector
quasi-variational inequalities, Comput. Appl. Math. (2012, to appear)

9. Chen, J.W., Wan, Z., Cho, Y.J.: Levitin-Polyak well-posedness by perturbations for systems of set-
valued vector quasi-equilibrium problems, Math. Methods Oper. Res. doi:10.1007/s00186-012-0414-5

10. Chen, J.W., Wan, Z., Zou, Y.: Strong convergence theorems for firmly nonexpansive-type mappings
and equilibrium problems in Banach spaces. Optim. (2011). doi:10.1080/02331934.2011.626779

11. Ding, X.P.: Auxiliary principle and algorithm for mixed equilibrium problems and bilevel mixed
equilibrium problems in Banach spaces. J. Optim. Theory Appl. 146, 347–357 (2010)

12. Ding, X.P.: Existence and algorithm of solutions for mixed equilibrium problems and bilevel mixed
equilibrium problems in Banach spaces. Acta Math. Sin. En. Ser. 28(3), 503–514 (2011)

123

http://dx.doi.org/10.1007/s10898-012-9870-y
http://dx.doi.org/10.1007/s10957-011-9963-7
http://dx.doi.org/10.1186/1029-242X-2012-57
http://dx.doi.org/10.1186/1029-242X-2012-57
http://dx.doi.org/10.1186/1687-1812-2011-91
http://dx.doi.org/10.1007/s00186-012-0414-5
http://dx.doi.org/10.1080/02331934.2011.626779


Bilevel invex equilibrium problems

13. Ding, X.P.: Bilevel generalized mixed equilibrium problems involving generalized mixed variational-
like inequality problems in reflexive Banach spaces. Appl. Math. Mech. Engl. Ed. 32(11), 1457–1474
(2011)

14. Ding, X.P.: Existence and iterative algorithm of solutions for a class of bilevel generalized mixed
equilibrium problems in Banach spaces. J. Glob. Optim. (2011). doi:10.1007/s10898-011-9724-z

15. Ding, X.P., Liou, Y.C., Yao, J.C.: Existence and algorithms for bilevel generalized mixed equilibrium
problems in Banach spaces. J. Glob. Optim. doi:10.1007/s10898-011-9712-3

16. Dinh, B.V., Muu, L.D.: On penalty and gap function methods for bilevel equilibrium problems. J. Appl.
Math. 2011, 14 (2011, Article ID 646452). doi:10.1155/2011/646452

17. Fan, K.: A generalization of Tychonoff’s fixed point theorem. Math. Ann. 142, 305–310 (1961)
18. Fang, Y.P., Hu, R., Huang, N.J.: Well-posedness for equilibrium problems and for optimization prob-

lems with equilibrium constraints. Comput. Math. Appl. 55, 89–100 (2008)
19. Guu, S.M., Li, J.: Vector variational-like inequalities with generalized bifunctions defined on nonconvex

sets. Nonlinear Anal. 71(7–8), 2847–2855 (2009)
20. Huang, N.J., Li, J., Thompson, B.H.: Stability for parametric implicit vector equilibrium problems.

Math. Comput. Model. 43, 1267–1274 (2006)
21. Lalitha, C.S., Mehta, M.: Vector variational inequalities with cone-pseudomonotone bifunctions.

Optim. Lett. 54(3), 327–338 (2005)
22. Lin, L.J.: Mathematical programming with system of equilibrium constraints. J. Global Optim. 37,

275–286 (2007)
23. Lin, L.J.: Existence theorems for bilevel problem with applications to mathematical program with

equilibrium constraint and semi-infinite problem. J. Optim. Theory Appl. 137(1), 27–40 (2008)
24. Luo, Z.Q., Pang, J.S., Ralph, D.: Mathematical Programs with Equilibrium Constraints. Cambridge

University Press, Cambridge (1996)
25. Lv, Y., Chen, Z., Wan, Z.: A neural network approach for solving mathematical programs with equi-

librium constraints. Expert Syst. Appl. 38, 231–234 (2011)
26. Moudafi, A.: Proximal methods for a class of bilevel monotone equilibrium problems. J. Global Optim.

47, 287–292 (2010)
27. Noor, M.A.: Mixed quasi invex equilibrium problems. Int. J. Math. Math. Sci. 57, 3057–3067 (2004)
28. Noor, M.A.: Invex equilibrium problems. J. Math. Anal. Appl. 302, 463–475 (2005)
29. Noor, M.A., Noor, K.I., Gupta, V.: On equilibrium-like problems. Appl. Anal. 86, 807–818 (2007)
30. Noor, M.A., Noor, K.I., Zainab, S.: On a predictor-corrector method for solving invex equilibrium

problems. Nonlinear Anal. 71, 3333–3338 (2009)
31. Xu, H.F., Ye, J.J.: Necessary optimality conditions for two-stage stochastic programs with equilibrium

constraints. SIAM J. Optim. 20(4), 1685–1715 (2010)
32. Ye, J.J.: Necessary and sufficient optimality conditions for mathematical programs with equilibrium

constraints. J. Math. Anal. Appl. 307, 305–369 (2005)

123

http://dx.doi.org/10.1007/s10898-011-9724-z
http://dx.doi.org/10.1007/s10898-011-9712-3
http://dx.doi.org/10.1155/2011/646452

	Bilevel invex equilibrium problems with applications
	Abstract
	1 Introduction
	2 Main results
	3  Applications
	Acknowledgments
	References


