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We develop a primal dual active set with continuation algorithm for solving the 
�0-regularized least-squares problem that frequently arises in compressed sensing. 
The algorithm couples the primal dual active set method with a continuation 
strategy on the regularization parameter. At each inner iteration, it first identifies 
the active set from both primal and dual variables, and then updates the primal 
variable by solving a (typically small) least-squares problem defined on the active 
set, from which the dual variable can be updated explicitly. Under certain conditions 
on the sensing matrix, i.e., mutual incoherence property or restricted isometry 
property, and the noise level, a finite step global convergence of the overall algorithm 
is established. Extensive numerical examples are presented to illustrate the efficiency 
and accuracy of the algorithm and its convergence behavior.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Over the last ten years, compressed sensing [9,15] has received a lot of attention amongst engineers, 
statisticians and mathematicians due to its broad range of potential applications. Mathematically it can be 
formulated as the following constrained �0 optimization problem:

min
x∈Rp

‖x‖0,

subject to ‖Ψx− y‖2 ≤ ε, (1.1)

where the sensing matrix Ψ ∈ Rn×p with p � n has normalized column vectors {ψi}, i.e.,

‖ψi‖ = 1, i = 1, · · · , p,
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ε ≥ 0 is the noise level, and ‖x‖0 denotes the number of nonzero components in the vector x. Due to the 
discrete structure of the term ‖x‖0, it is very challenging to develop an efficient algorithm to accurately solve 
the model (1.1). Hence, approximate methods for the model (1.1), especially greedy heuristics and convex 
relaxation, are very popular in practice. In greedy algorithms, including orthogonal matching pursuit [34], 
stagewise orthogonal matching pursuit [17], regularized orthogonal matching pursuit [30], CoSaMP [29], 
subspace pursuit [13], and greedy gradient pursuit [4,7] etc., one first identifies the support of the sought-for 
signal, i.e., the locations of (one or more) nonzero components, iteratively based on the current dual variable 
(correlation), and then updates the components on the support by solving a least-squares problem. There 
are also several variants of greedy heuristics, e.g., (accelerated) iterative hard thresholding [3,6] and hard 
thresholding pursuit [19], which are based on the sum of the current primal and dual variable. In contrast, 
basis pursuit finds one minimizer of a convex relaxation problem [11,37], for which a wide variety of convex 
optimization algorithms can be conveniently applied; see [2,12,33,39] for comprehensive overviews and the 
references therein.

Besides greedy methods and convex relaxation, the “Lagrange” counterpart of (1.1) (or equivalently, the 
�0-regularized minimization problem), which reads

min
x∈Rp

Jλ(x) = 1
2‖Ψx− y‖2 + λ‖x‖0, (1.2)

has been very popular in many applications, e.g., model selection, statistical regression, and image restora-
tion. In the model (1.2), λ > 0 is a regularization parameter, controlling the sparsity level of the regularized 
solution. Due to the nonconvexity and discontinuity of the function ‖x‖0, the relation between problems 
(1.1) and (1.2) is not self evident. We shall show that under certain assumptions on the sensing matrix Ψ
and the noise level ε (and with λ chosen properly), the support of the regularized solution to (1.2) coincides 
with that of the true signal, cf. Theorem 2.1.

The existence and a characterization of global minimizers to (1.2) were established in [26,31]. However, 
it is still very challenging to develop globally convergent algorithms for efficiently solving problem (1.2) in 
view of its nonconvexity and nonsmoothness. Nonetheless, due to its broad range of applications, several 
algorithms have been developed to find an approximate solution to problem (1.2), including iterative hard 
thresholding [5], forward backward splitting [1], penalty decomposition [27] and stochastic continuation 
[35,36], to name just a few. Theoretically, these algorithms can at best have a local convergence. Very 
recently, in [25,26], based on a coordinatewise characterization of the global minimizers, a novel primal dual 
active set (PDAS) algorithm was developed to solve problem (1.2). The extensive simulation studies in [26]
indicate that when coupled with a continuation technique, the PDAS algorithm merits a global convergence 
property. The idea of continuation is well established for iterative algorithms with the purpose of “warm 
starting” and globalizing the convergence. Unsurprisingly, this idea has been extensively pursued in sparsity 
optimization, especially the �1 penalty [43,20,44,18]. The popular OMP [34] can be viewed as a continuation 
in the sparsity level of the solution, where one active set is added at each step; see also [14]. However, to 
the best of our knowledge, the application of the continuation technique to the PDAS algorithm for the �0

optimization problem (1.2) and its rigorous convergence analysis are new.
The PDAS algorithm solves the necessary optimality condition of a coordinatewise minimizer to (1.2), 

cf. (2.2) below, and thus it can at best converge to a coordinatewise minimizer. However, if the support 
of the coordinatewise minimizer is small and the sensing matrix Ψ satisfies certain mild conditions, then 
its active set is contained in the support of the true signal, cf. Lemma 2.4. Hence, the support of the 
minimizer will coincide with that of the true signal if we choose the regularization parameter λ properly 
(and thus control the size of the active set) during the iteration. This naturally motivates the use of a 
continuation strategy on the parameter λ. The resulting PDAS continuation (PDASC) algorithm extends 
the PDAS developed in [26]. In this work, we provide a convergence analysis of the PDASC algorithm under 
commonly used assumptions on the sensing matrix Ψ for the analysis of existing algorithms, i.e., mutual 
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incoherence property and restricted isometry property. The convergence analysis relies essentially on a novel 
characterization of the evolution of the active set during the primal-dual active set iterations. To the best 
of our knowledge, this represents the first work on the global convergence of an algorithm for problem (1.2), 
without using a knowledge of the exact sparsity level.

The rest of the paper is organized as follows. In Section 2, we describe the problem setting, collect basic 
estimates, and provide refined properties of a coordinatewise minimizer. In Section 3, we give the complete 
algorithm, discuss the parameter choices, and provide a global convergence analysis. Finally, in Section 4, 
several numerical examples are provided to illustrate the efficiency of the algorithm and the convergence 
theory.

2. Regularized �0-minimization

In this section, we describe the problem setting, and derive basic estimates, which are essential for the 
convergence analysis. Further, we give sufficient conditions for a coordinatewise minimizer to be a global 
minimizer, which allows one to derive equivalence between (1.1) and (1.2), under certain circumstances.

2.1. Problem setting

Suppose that the true signal x∗ has T nonzero components with its active set (indices of nonzero com-
ponents) denoted by A∗, i.e., T = |A∗| and the noisy data y is formed by

y =
∑
i∈A∗

x∗
iψi + η.

We assume that the noise vector η satisfies ‖η‖ ≤ ε, with ε ≥ 0 being the noise level. Further, we let

S = {1, 2, ..., p} and I∗ = S\A∗.

For any index set A ⊆ S, we denote by xA ∈ R|A| (respectively ΨA ∈ Rn×|A|) the subvector of x (respectively 
the submatrix of Ψ) whose indices (respectively column indices) appear in A. Last, we denote by xo the 
oracle solution defined by

xo = Ψ†
A∗y, (2.1)

where Ψ†
A denotes the pseudoinverse of the submatrix ΨA, i.e., Ψ†

A = (Ψ t
AΨA)−1Ψ t

A if Ψ t
AΨA is invertible. The 

oracle solution xo is the least-squares solution on the true active set A∗.
In compressive sensing, there are two assumptions, i.e., mutual incoherence property (MIP) [16] and 

restricted isometry property (RIP) [10], on the sensing matrix Ψ that are frequently used for the convergence 
analysis of sparse recovery algorithms. The MIP assumes that the mutual coherence ν of the sensing matrix 
Ψ is small, where the mutual coherence ν of Ψ is defined by

ν = max
1≤i,j≤p,i �=j

∣∣ψt
iψj

∣∣.
A sensing matrix Ψ is said to satisfy RIP of level s if there exists a constant δ ∈ (0, 1) such that

(1 − δ)‖x‖2 ≤ ‖Ψx‖2 ≤ (1 + δ)‖x‖2, ∀x ∈ Rp with ‖x‖0 ≤ s,

and we denote by δs the smallest constant with respect to the sparsity level s. We note that the mutual 
coherence ν can be easily computed, but the RIP constant δs is nontrivial to evaluate (see [38] for some 
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recent results on its computational complexity). Nonetheless, the mutual coherence ν can be used to provide 
a simple upper bound on the RIP constant δs [41, Proposition 21]. However, our assumptions on the mutual 
coherence ν do not follow from that on the RIP constant δ, or vice versa, and thus we present theoretical 
results for both conditions.

The next lemma gives basic estimates under the MIP condition.

Lemma 2.1. Let A and B be disjoint subsets of S. Then

∥∥Ψ t
Ay

∥∥
�∞

≤ ‖y‖,∥∥Ψ t
BΨAxA

∥∥
�∞

≤ |A|ν‖xA‖�∞ ,

∥∥(Ψ t
AΨA

)−1
xA

∥∥
�∞

≤ ‖xA‖�∞
1 − (|A| − 1)ν if

(
|A| − 1

)
ν < 1.

Proof. If A = ∅, then the estimates are trivial. Hence we will assume A is nonempty. For any i ∈ A,

∣∣ψt
iy
∣∣ ≤ ‖ψi‖‖y‖ ≤ ‖y‖.

This shows the first inequality. Next, for any i ∈ B,

∣∣ψt
iΨAxA

∣∣ =
∣∣∣∣∑
j∈A

ψt
iψjxj

∣∣∣∣ ≤ ∑
j∈A

∣∣ψt
iψj

∣∣|xj | ≤ |A|ν‖xA‖�∞ .

This shows the second assertion. To prove the last estimate, we follow the proof strategy of [40, Theorem 3.5], 
i.e., applying a Neumann series method. First we note that Ψ t

AΨA has a unit diagonal because all columns 
of Ψ are normalized. So the off-diagonal part Φ satisfies

Ψ∗
AΨA = E|A| + Φ,

where E|A| is an identity matrix. Each column of the matrix Φ lists the inner products between one column 
of ΨA and the remaining |A| − 1 columns. By the definition of the mutual coherence ν and the operator 
norm of a matrix

‖Φ‖�∞,�∞ = max
k∈A

∑
j∈A\{k}

∣∣ψt
jψk

∣∣ ≤ (
|A| − 1

)
ν.

Whenever ‖Φ‖�∞,�∞ < 1, the Neumann series 
∑∞

k=0(−Φ)k converges to the inverse (E|A| +Φ)−1. Hence, we 
may compute

∥∥(Ψ∗
AΨA

)−1∥∥
�∞,�∞

=
∥∥(E|A| + Φ)−1∥∥

�∞,�∞
=

∥∥∥∥∥
∞∑
k=0

(−Φ)k
∥∥∥∥∥
�∞,�∞

≤
∞∑
k=0

‖Φ‖k�∞,�∞ = 1
1 − ‖Φ‖�∞,�∞

≤ 1
1 − (|A| − 1)ν .

The desired estimate now follows immediately. �
The following lemma collects some well known estimates on the RIP constant δs; see [29, Propositions 3.1 

and 3.2] and [13, Lemma 1] for the proofs.
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Lemma 2.2. Let A and B be disjoint subsets of S. Then
∥∥Ψ t

AΨAxA

∥∥ �
(
1 ∓ δ|A|

)
‖xA‖,∥∥(Ψ t

AΨA

)−1
xA

∥∥ � 1
1 ± δ|A|

‖xA‖,∥∥Ψ t
AΨB

∥∥ ≤ δ|A|+|B|,∥∥Ψ†
Ay

∥∥ ≤ 1√
1 − δ|A|

‖y‖,

δs ≤ δs′ , if s < s′.

The next lemma gives some crucial estimates for one-step primal dual active set iteration on the active 
set A. These estimates provide upper bounds on the dual variable d = Ψ t(y−Ψx) and the error x̄A = xA−x∗

A

on the active set A. They will play an essential role for subsequent analysis, including the convergence of 
the PDASC algorithm.

Lemma 2.3. For any set A ⊆ S with |A| ≤ T , let B = A∗ \ A and I = S \ A, and consider the following 
primal dual iteration on A

xA = Ψ†
Ay, xI = 0, d = Ψ t(y − Ψx).

Then the quantities x̄A ≡ xA − x∗
A and d satisfy the following estimates.

(a) If ν < 1/(T − 1), then dA = 0 and

‖x̄A‖�∞ ≤ 1
1 − (|A| − 1)ν

(
|B|ν

∥∥x∗
B

∥∥
�∞

+ ε
)
,

|dj | ≥
∣∣x∗

j

∣∣− ∥∥x∗
B

∥∥
�∞

(
|B| − 1

)
ν − ε− |A|ν‖x̄A‖�∞ , ∀j ∈ B,

|dj | ≤ |B|ν
∥∥x∗

B

∥∥
�∞

+ ε + |A|ν‖x̄A‖�∞ , ∀j ∈ I∗ ∩ I.

(b) If the RIP of sparsity level s := max{|A| + |B|, T + 1} is satisfied, then dA = 0 and

‖x̄A‖ ≤
δ|A|+|B|
1 − δ|A|

∥∥x∗
B

∥∥ + 1√
1 − δ|A|

ε,

|dj | ≥
∣∣x∗

j

∣∣− δ|B|
∥∥x∗

B

∥∥− ε− δ|A|+1‖x̄A‖, ∀j ∈ B,

|dj | ≤ δ|B|+1
∥∥x∗

B

∥∥ + ε + δ|A|+1‖x̄A‖, ∀j ∈ I∗ ∩ I.

Proof. We show only the estimates under the RIP condition and using Lemma 2.2, and that for the MIP 
condition follow similarly from Lemma 2.1. If A = ∅, then all the estimates clearly hold. In the case A = ∅, 
then by the assumption, Ψ t

AΨA is invertible. By the definition of the update xA and the data y we deduce 
that

dA = Ψ t
A(y − ΨAxA) = 0,

and

x̄A =
(
Ψ t
AΨA

)−1
Ψ t
A

(
ΨA∗x∗

A∗ + η − ΨAx
∗
A

)
=

(
Ψ t
AΨA

)−1
Ψ t
A

(
ΨBx

∗
B + η

)
.
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Consequently, by Lemma 2.2 and the triangle inequality, there holds

‖x̄A‖ ≤ 1
1 − δ|A|

∥∥Ψ t
AΨBx

∗
B

∥∥ +
∥∥Ψ†

Aη
∥∥

≤ 1
1 − δ|A|

δ|A|+|B|
∥∥x∗

B

∥∥ + 1√
1 − δ|A|

ε.

Next, it follows from the definition of the dual variable d, i.e.,

dj = ψt
j(y − ΨAxA) = ψt

j

(
ΨBx

∗
B + η − ΨAx̄A

)
,

Lemma 2.2, and the assumption ψt
jψj = 1 that for any j ∈ B, there holds

|dj | =
∣∣ψt

jψjx
∗
j + ψt

j

(
ΨB\{j}x

∗
B\{j} + η − ΨAx̄A

)∣∣
≥

∣∣x∗
j

∣∣− (∣∣ψt
jΨB\{j}x

∗
B\{j}

∣∣ +
∣∣ψt

jη
∣∣ + |ψt

jΨAx̄A

∣∣)
≥

∣∣x∗
j

∣∣− δ|B|
∥∥x∗

B

∥∥− ε− δ|A|+1‖x̄A‖.

Similarly, for any j ∈ I∗ ∩ I, there holds

|dj | ≤ δ|B|+1
∥∥x∗

B

∥∥ + ε + δ|A|+1‖x̄A‖.

This completes the proof of the lemma. �
2.2. Coordinatewise minimizer

Due to the nonconvexity and discontinuity of the function ‖x‖0, the classical theory [24] on the existence 
of a Lagrange multiplier cannot be applied directly to show the equivalence between the constrained problem 
(1.1) and the Lagrange counterpart (1.2). Nonetheless, both formulations aim at recovering the true sparse 
signal x∗, and thus we expect that they are closely related to each other. We shall establish below that under 
certain circumstances (with the regularization parameter λ properly chosen) the oracle solution xo is the 
only global minimizer of problem (1.2), and as a consequence, we derive directly the equivalence between 
problems (1.1) and (1.2).

To this end, we first characterize minimizers of problem (1.2). Since the cost function Jλ(x) is nonconvex 
and discontinuous, instead of a global minimizer, we study its coordinatewise minimizers, which was intro-
duced in [42]. A vector x = (x1, x2, . . . , xp)t ∈ Rp is called a coordinatewise minimizer to Jλ(x) if it is the 
minimum along each coordinate direction, i.e.,

xi ∈ arg min
t∈R

Jλ(x1, ..., xi−1, t, xi+1, ..., xp).

The necessary and sufficient condition for a coordinatewise minimizer x to Jλ(x) is given by [25,26]:

xi ∈ S�0

λ (xi + di) ∀i ∈ S, (2.2)

where d = Ψ t(y − Ψx) denotes the dual variable, and S�0

λ is the hard thresholding operator defined by

S�0

λ (v)

⎧⎨
⎩

= 0, |v| <
√

2λ,
∈ {0, sgn(v)

√
2λ}, |v| =

√
2λ,√ (2.3)
= v, |v| > 2λ.
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Using the operator S�0

λ , the condition (2.2) can be equivalently written as

⎧⎨
⎩

|xi + di| >
√

2λ ⇒ di = 0,
|xi + di| <

√
2λ ⇒ xi = 0,

|xi + di| =
√

2λ ⇒ xi = 0 or di = 0.

We note that these conditions as the optimality condition for the stationary point to (1.2) are well known 
in the literature (see e.g., [5]). In [5], it forms the basis of the iterative hard thresholding algorithm. Con-
sequently, with the active set A = {i : xi = 0}, there holds

min
i∈A

|xi| ≥
√

2λ ≥ ‖d‖�∞ . (2.4)

It is known that any coordinatewise minimizer x for problem (1.2) is a local minimizer [26, Theo-
rem 3.1(i)], [31, Section 3.1]. To further analyze the coordinatewise minimizer, we need the following 
assumption on the noise level ε:

Assumption 2.1. The noise level ε is small in the sense ε ≤ β mini∈A∗ |x∗
i |, for some 0 ≤ β < 1/2.

The next lemma gives an interesting characterization of the active set of the coordinatewise minimizer.

Lemma 2.4. Let Assumption 2.1 hold, and x be a coordinatewise minimizer with a support A and |A| ≤ T . 
If either (a) ν < (1 − 2β)/(3T − 1) or (b) δ � δ2T ≤ (1 − 2β)/(2

√
T + 1) holds, then A ⊆ A∗.

Proof. Let I = S \A. Since x is a coordinatewise minimizer, it follows from (2.2) that

xA = Ψ†
Ay, xI = 0, d = Ψ t(y − Ψx).

We shall prove the assertions by means of contradiction. Assume the contrary, i.e., A � A∗. We let B =
A∗ \ A, which is nonempty by assumption, and denote by iA ∈ {i ∈ I : |x∗

i | = ‖x∗
B‖�∞}. Then iA ∈ B. 

Further by (2.4), there holds

|diA | ≤ ‖d‖�∞ ≤ min
i∈A

|xi| ≤ min
i∈A\A∗

|xi| ≤ ‖x̄A‖�∞ ≤ ‖x̄A‖. (2.5)

Now we discuss the two cases separately.
Case (a). By Lemma 2.1, ε ≤ β mini∈A∗ |x∗

i | ≤ β‖x∗
B‖�∞ from Assumption 2.1 and the choice of the index 

iA, we have

‖x̄A‖�∞ ≤ 1
1 − (|A| − 1)ν

(
|B|ν

∥∥x∗
B

∥∥
�∞

+ ε
)

≤ 1
1 − (|A| − 1)ν

(
|B|ν + β

)∥∥x∗
B

∥∥
�∞

,

|diA | ≥
∣∣x∗

iA

∣∣− ∥∥x∗
B

∥∥
�∞

(
|B| − 1

)
ν − ε− |A|ν‖x̄A‖�∞

≥
∥∥x∗

B

∥∥
�∞

(
1 −

(
|B| − 1

)
ν − β − |A|ν 1

1 − (|A| − 1)ν
(
|B|ν + β

))
.

Consequently, we deduce
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|diA | − ‖x̄A‖�∞ ≥ ‖x∗
B‖�∞

1 − (|A| − 1)ν
[
1 −

(
|A| + 2|B|

)
ν −

(
|A| + |B|

)
ν2 + 2ν + ν2 − β(ν + 2)

]
≥ ‖x∗

B‖�∞
1 − (|A| − 1)ν

[
1 − 3Tν + ν − 2β + ν(1 − β − 2Tν)

]
≥ ‖x∗

B‖�∞
1 − (|A| − 1)ν

[
1 − (3T − 1)ν − 2β

]
> 0,

under assumption (a) ν < (1 − 2β)/(3T − 1). This leads to a contradiction to (2.5).
Case (b). By assumption, |A| + |B| ≤ 2T and by Lemma 2.2, there hold

‖x̄A‖ ≤ δ

1 − δ

∥∥x∗
B

∥∥ + 1√
1 − δ

ε

≤ δ

1 − δ

∥∥x∗
B

∥∥ + 1
1 − δ

ε,

|diA | ≥
∣∣x∗

iA

∣∣− δ
∥∥x∗

B

∥∥− ε− δ‖x̄A‖

≥
∣∣x∗

iA

∣∣− δ

1 − δ

∥∥x∗
B

∥∥− 1
1 − δ

ε.

Consequently, with the assumption on ε and δ < 1−2β
2
√
T+1 , we get

|diA | − ‖x̄A‖ ≥
∣∣x∗

iA

∣∣− 2δ
1 − δ

∥∥x∗
B

∥∥− 2
1 − δ

ε

≥
∣∣x∗

iA

∣∣(1 − 2
√
Tδ + 2β
1 − δ

)
> 0,

which is also a contradiction to (2.5). This completes the proof of the lemma. �
From Lemma 2.4, if the support size of the active set A of a coordinatewise minimizer x can be controlled, 

then we may obtain information of the true active set A∗: it is a superset of A. However, a local minimizer 
generally does not yield such information; see following result. Hence the coordinatewise minimizer is more 
informative. The proof can be found also in [31], but we include a short sketch here for completeness.

Proposition 2.1. For any given index set A ⊆ S, the solution x to the least-squares problem
minsupp(x)⊆A‖Ψx − y‖ is a local minimizer.

Proof. Let τ = min{|xi| : xi = 0}. Then for any small perturbation h in the sense ‖h‖�∞ < τ , we have 
xi = 0 → xi + hi = 0. Now we show that x is a local minimizer. To see this, we consider two cases, 
i.e., supp(h) ⊆ A and supp(h) � A. First consider the case supp(h) ⊆ A. By the definition of x, and 
‖x‖0 ≤ ‖x + h‖0, we deduce

Jλ(x + h) = 1
2
∥∥Ψ(x + h) − y

∥∥2 + λ‖x + h‖0

≥ 1
2‖Ψx− y‖2 + λ‖x‖0 = Jλ(x).

Alternatively, if supp(h) � A, then ‖x + h‖0 ≥ ‖x‖0 + 1. Since

lim
‖h‖→0

∥∥Ψ(x + h) − y
∥∥ = ‖Ψx− y‖,

we again have Jλ(x + h) > Jλ(x) for sufficiently small h. This completes the proof of the proposition. �
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Now we can study global minimizers to problem (1.2). For any λ > 0, there exists a global minimizer xλ

to problem (1.2) [26]. Further, the following monotonicity relation holds [23], [22, Section 3.2].

Lemma 2.5. For λ1 > λ2 > 0, there holds ‖xλ1‖0 ≤ ‖xλ2‖0.

If the noise level ε is sufficiently small, and the parameter λ is properly chosen, the oracle solution xo is 
the only global minimizer to Jλ(x), cf. Theorem 2.1, which in particular implies the equivalence between 
the two formulations (1.1) and (1.2); see Remark 2.1 below.

Theorem 2.1. Let Assumption 2.1 hold.

(a) Suppose ν < (1 − 2β)/(3T − 1) and β ≤ (1 − 2(T − 1)ν)/(T + 3), and let

ξ = 1 − 2(T − 1)ν − 2β − β2

2T min
i∈A∗

∣∣x∗
i

∣∣2.
Then for any λ ∈ (ε2/2, ξ), the oracle solution xo, cf. (2.1), is the only global minimizer to Jλ(x).

(b) Suppose δ � δ2T ≤ (1 − 2β)/(2
√
T + 1) and β ≤ (1 − 2δ − δ2)/4, and let

ξ =
[
1
2(1 − δ) − δ2

1 − δ
− β√

1 − δ
− 1

2β
2
]

min
i∈A∗

∣∣x∗
i

∣∣2.
Then for any λ ∈ (ε2/2, ξ), the oracle solution xo, cf. (2.1), is the only global minimizer to Jλ(x).

Proof. Let x be a global minimizer to problem (1.2), and its support be A. It suffices to show A = A∗. If 
|A| ≥ T + 1, then by the choice of λ, we deduce

Jλ(x) ≥ λ(T + 1) > λT + 1
2ε

2 ≥ Jλ
(
xo

)
,

which contradicts the minimizing property of x. Hence, |A| ≤ T . Since a global minimizer is always a 
coordinatewise minimizer, by Lemma 2.4, we deduce A ⊆ A∗. If A = A∗, then B = A∗\A is nonempty. By 
the global minimizing property of x, there holds x = Ψ†

Ay. Using the notation x̄A from Lemma 2.3, we have

Jλ(x) = 1
2
∥∥ΨBx

∗
B + η − ΨAx̄A

∥∥2 + λ|A|. (2.6)

Now we consider the cases of the MIP and RIP separately.
Case (a) MIP: Let iA ∈ {i ∈ I : |x∗

i | = ‖x∗
B‖�∞}, then iA ∈ B and |x∗

iA
| = ‖x∗

B‖�∞ . Hence, by Lemmas 2.3
and 2.1, there holds

1
2
∥∥ψiAx

∗
iA + ΨB\{iA}x

∗
B\{iA} + η − ΨAx̄A

∥∥2

≥ 1
2
∣∣x∗

iA

∣∣2 − ∣∣x∗
iA

∣∣(∣∣〈ψiA , ΨB\{iA}x
∗
B\{iA}

〉∣∣ +
∣∣〈ψiA , η〉

∣∣ +
∣∣〈ψiA , ΨAx̄A〉

∣∣)
≥ 1

2
∣∣x∗

iA

∣∣2 − ∣∣x∗
iA

∣∣((|B| − 1
)
ν
∣∣x∗

iA

∣∣ + ε + |A|ν
1 − (|A| − 1)ν

(
|B|ν

∣∣x∗
iA

∣∣ + ε
))

.

Now with ε < β mini∈A∗ |x∗
i | ≤ β|x∗

iA
| from Assumption 2.1, we deduce

Jλ(x) ≥
∣∣x∗

iA

∣∣2(1 −
((

|B| − 1
)
ν + β + |A|ν (|B|ν + β)

))
+ λ|A|
2 1 − (|A| − 1)ν



JID:YACHA AID:1008 /FLA [m3L; v1.142; Prn:20/10/2014; 11:00] P.10 (1-27)
10 Y. Jiao et al. / Appl. Comput. Harmon. Anal. ••• (••••) •••–•••
=
∣∣x∗

iA

∣∣2(1
2 − (T − 1)ν − β

)
+

∣∣x∗
iA

∣∣2|A|ν
(

1 − |B|ν + β

1 − (|A| − 1)ν

)
+ λ|A|

≥
∣∣x∗

iA

∣∣2(1
2 − (T − 1)ν − β

)
,

where the last inequality follows from (|A| + |B| − 1)ν + β < 1. By Assumption 2.1, there holds ε2/2 ≤
β2/2 mini∈A∗ |x∗

i |2. Now by the assumption β ≤ (1 − 2(T − 1)ν)/(T + 3), we deduce (T + 1)β2 + 2β <

(T + 3)β ≤ 1 − 2(T − 1)ν, and hence Tβ2 < 1 − 2(T − 1)ν − 2β − β2. Together with the definition of ξ, this 
implies ξ > ε2/2. Further, by the choice of the parameter λ, i.e., λ ∈ (ε2/2, ξ), there holds

Jλ(x) − Jλ
(
xo

)
≥

[
1
2 − (T − 1)ν − β − 1

2β
2
]

min
i∈A∗

∣∣x∗
i

∣∣2 − λT > 0,

which contradicts the optimality of x.
Case (b) RIP: It follows from (2.6) that

Jλ(x) ≥ 1
2
∥∥ΨBx

∗
B

∥∥2 −
∣∣〈η, ΨBx

∗
B

〉∣∣− ∣∣〈x∗
B , Ψ

t
BΨAx̄A

〉∣∣ + λ|A|
≥

∥∥ΨBx
∗
B

∥∥( 1
2
∥∥ΨBx

∗
B

∥∥− ε
)
−

∥∥x∗
B

∥∥δ‖x̄A‖ + λ|A|.

By Assumption 2.1 and the assumptions on β and δ, we deduce 
√

1 − δ‖x∗
B‖ ≥ ε. Now in view of the 

monotonicity of the function t(t/2 − ε) for t ≥ ε, and the inequality ‖ΨBx
∗
B‖ ≥

√
1 − δ‖x∗

B‖ from the 
definition of the RIP constant δ, we have

∥∥ΨBx
∗
B

∥∥( 1
2
∥∥ΨBx

∗
B

∥∥− ε
)
≥

√
1 − δ

∥∥x∗
B

∥∥( 1
2

√
1 − δ

∥∥x∗
B

∥∥− ε
)
.

Thus by Lemma 2.3, we deduce

Jλ(x) ≥ 1 − δ

2
∥∥x∗

B

∥∥2 − ε
√

1 − δ
∥∥x∗

B

∥∥−
∥∥x∗

B

∥∥( δ2

1 − δ

∥∥x∗
B

∥∥ + δ√
1 − δ

ε

)
+ λ|A|

= 1 − δ

2
∥∥x∗

B

∥∥2 − 1√
1 − δ

ε
∥∥x∗

B

∥∥−
∥∥x∗

B

∥∥2 δ2

1 − δ
+ λ|A|

≥
∥∥x∗

B

∥∥2
[
1 − δ

2 − δ2

1 − δ
− β√

1 − δ

]
+ λ|A|,

where the last line follows from ε < β‖x∗
B‖, in view of Assumption 2.1. Appealing again to Assumption 2.1, 

ε2/2 ≤ β2 mini∈A∗ |x∗
i |2/2 ≤ β2‖x∗

B‖2/2. Next it follows from the assumption β ≤ (1 − δ − δ2)/4 that the 
inequality

β2 + β√
1 − δ

≤ β2 + β√
1 − δ

≤ 2β
1 − δ

≤ 1 − 2δ − δ2

2(1 − δ) = 1 − δ

2 − δ2

1 − δ

holds. This together with the definition of ξ yields ξ > ε2/2. Further, the choice of λ ∈ (ε2/2, ξ) implies

Jλ(x) − Jλ
(
xo

)
≥

∥∥x∗
B

∥∥2
[
1 − δ

2 − δ2

1 − δ
− β√

1 − δ
− 1

2β
2
]
− λ|B| > 0,

which again leads to a contradiction. This completes the proof of the theorem. �
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Proposition 2.2. Let the conditions in Theorem 2.1 hold. Then the oracle solution xo is a minimizer of (1.1). 
Moreover, the support to any solution of problem (1.1) is A∗.

Proof. First we observe that there exists a solution x̄ to problem (1.1) with |supp(x̄)| ≤ T , upon noting 
that the true solution x∗ satisfies ‖Ψx∗ − y‖ ≤ ε and ‖x∗‖0 ≤ T . Clearly, for any minimizer x̄ to problem 
(1.1) with support |A| ≤ T , then Ψ†

Ay is also a minimizer with ‖ΨΨ †
Ay − y‖ ≤ ‖Ψx̄ − y‖. Now if there is a 

minimizer x̄ with A = A∗, by repeating the arguments in the proof of Theorem 2.1, we deduce

1
2
∥∥ΨΨ †

Ay − y
∥∥2 + λ

∥∥Ψ †
Ay

∥∥
0 = Jλ

(
Ψ†
Ay

)
> Jλ

(
xo

)
= 1

2ε
2 + λT ⇒ ‖Ψx̄− y‖ > ε,

which leads a contradiction to the assumption that x̄ is a minimizer to problem (1.1). Hence, any minimizer 
of (1.1) has a support A∗, and thus the oracle solution xo is a minimizer. �
Remark 2.1. Due to the nonconvex structure of problem (1.1), the equivalence between problem (1.1) and 
its “Lagrange” version (1.2) is generally not clear. However under certain assumptions, their equivalence 
can be obtained, cf. Theorem 2.1 and Proposition 2.2. Further, we note that very recently, the equivalence 
between (1.2) and the following constrained sparsity problem

min ‖Ψx− y‖ subject to ‖x‖0 ≤ T

was discussed in [32].

3. Primal-dual active set algorithm with continuation

In this section, we present the primal-dual active set with continuation (PDASC) algorithm, and establish 
its finite step convergence property.

3.1. The PDASC algorithm

The PDASC algorithm combines the strengths of the PDAS algorithm [26] and the continuation tech-
nique. The complete procedure is described in Algorithm 1. The PDAS algorithm (the inner loop of 
Algorithm 1) first determines the active set A from the primal variable x and dual variable d, then up-
dates the primal variable x by solving a least-squares problem on the active set A, and finally updates 
the dual variable d explicitly. It is well known that for convex optimization problems the PDAS algorithm 
can be interpreted as the semismooth Newton method [24]. Thus the algorithm merits a local superlinear 
convergence, and it reaches convergence with a good initial guess. In contrast, the continuation technique 
on the regularization parameter λ allows one to control the size of the active set A, and thus the active 
set of the coordinatewise minimizer lies within the true active set A∗, under appropriate assumptions. For 
example, for the choice of the parameter λ0 ≥ ‖Ψ ty‖2

�∞/2, x(λ0) = 0 is the unique global minimizer to the 
function Jλ0 , and its active set A is empty.

In the algorithm, there are a number of free parameters: the starting value λ0 for the parameter λ, the 
decreasing factor ρ ∈ (0, 1) (for λ), and the maximum number Jmax of iterations for the inner PDAS loop. 
Further, one needs to set the stopping criteria at lines 6 and 10. Below we discuss their choices.

The choice of the initial value λ0 is not important. For any choice λ0 ≥ ‖Ψ ty‖2
�∞/2, x = 0 is the 

unique global minimizer, and A = ∅. Both the decreasing factor ρ and the iteration number Jmax affect the 
accuracy and efficiency of the algorithm: Larger ρ and Jmax values make the algorithm have better exact 
support recovery probability but at the expense of more computing time. Numerically, ρ is determined by 
the number of grid points for the parameter λ. Specifically, given an initial value λ0 ≥ ‖Ψ ty‖2

�∞/2 and a 
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Algorithm 1 Primal dual active set with continuation (PDASC) algorithm.
1: Set λ0 ≥ 1

2‖Ψ
ty‖2

�∞ , A(λ0) = ∅, x(λ0) = 0 and d(λ0) = Ψty, ρ ∈ (0, 1), Jmax ∈ N.
2: for k = 1, 2, ... do
3: Let λk = ρλk−1, A0 = A(λk−1), (x0, d0) = (x(λk−1), d(λk−1)).
4: for j = 1, 2, ..., Jmax do
5: Compute the active and inactive sets Aj and Ij :

Aj =
{
i :

∣∣xj−1
i + d

j−1
i

∣∣ > √
2λk

}
and Ij = A

c
j .

6: Check stopping criterion Aj = Aj−1.
7: Update the primal and dual variables xj and dj respectively by

⎧⎪⎨
⎪⎩

xj
Ij

= 0,
Ψt

Aj
ΨAj

xj
Aj

= Ψt
Aj

y,

dj = Ψt(Ψxj − y).

8: end for
9: Set j̃ = min(Jmax , j), and A(λk) = {i : |xj̃

i + dj̃
i | >

√
2λk} and (x(λk), d(λk)) = (xj̃ , dj̃).

10: Check stopping criterion: ‖Ψx(λk) − y‖ ≤ ε.
11: end for

small constant λmin, e.g., 1e−15λ0, the interval [λmin, λ0] is divided into N equally distributed subintervals 
in the logarithmic scale. A large N value implies a large decreasing factor ρ. The choice Jmax = 1 generally 
works well, which is also covered in the convergence theory in Theorems 3.1 and 3.2 below.

The stopping criterion for each λ-problem in Algorithm 1 is either Aj = Aj−1 or j = Jmax , instead of the 
standard criterion Aj = Aj−1 for active set type algorithms [24]. The condition j = Jmax is very important 
for nonconvex problems. This is motivated by the following empirical observation: When the true signal x∗

does not have a strong decay property, e.g., 0-1 signal, the inner PDAS loop (for each λ-problem) may never 
reach the condition Aj = Aj−1 within finite steps; see the example below.

Example 3.1. In this example, we illustrate the convergence of the PDAS algorithm. Let −1 < μ < 0, 
A∗ = {1, 2}, and

Ψ1 = 1√
1 + μ2

(1, μ, 0, ..., 0)t, Ψ2 = 1√
1 + μ2

(μ, 1, 0, ..., 0)t, x∗
1 = x∗

2 = 1.

In the absence of data noise η, the data y is given by

y = 1√
1 + μ2

(1 + μ, 1 + μ, 0, ..., 0)t.

Now we let 
√

2λ ∈ ( (1+μ)2
1+μ2 , (1−μ2)2

(1+μ2)2 ), the initial guess A1 = {1}. Then direct computation yields

x1 = 1
1 + μ2

(
(1 + μ)2, 0

)t
,

y − Ψx1 = 1 − μ2

(
√

1 + μ2)3
(−μ, 1, 0, ..., 0)t,

d1 = 1
(1 + μ2)2

(
0,
(
1 − μ2)2)t.

Hence d1
2 >

√
2λ > x1

1, and A2 = {2}. Similarly, we have A3 = {1} = A1, which implies that the algorithm 
simply alternates between the two sets {1} and {2} and will never reach the stopping condition Ak = Ak+1.
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The stopping criterion at line 10 of Algorithm 1 is a discrete analogue of the discrepancy principle. This 
principle is well established in the inverse problem community for selecting an appropriate regularization 
parameter [22]. The rationale behind the rule is that one cannot expect the reconstruction to be more 
accurate than the data accuracy, i.e., the discrepancy ε. In the PDASC algorithm, if the active set is always 
contained in the true active set A∗ throughout the iteration, then the discrepancy principle can always be 
satisfied for some λk, and the solution x(λk) resembles closely the oracle solution xo.

3.2. Convergence analysis

Now we discuss the convergence of Algorithm 1. First we note that for a fixed λ value, since there are only 
a finite number of active sets, the PDAS algorithm is asymptotically periodic, and one naturally expects 
a finite-step convergence, if the desired convergence does occur. However, the convergence of the iteration 
itself does not follow directly, cf. Example 3.1. We shall discuss the cases of the MIP and RIP conditions 
separately. The general proof strategy is as follows. It essentially relies on the precise characterization of 
the evolution of the active set during the iteration, especially a certain monotonicity relation of the active 
set A(λk) (via the continuation technique). In particular, we introduce two auxiliary sets Gλ,s1 and Gλ,s2 , 
cf. (3.1) below, to precisely characterize the evolution of the active set A during the PDASC iteration.

First we consider the MIP case. We begin with an elementary observation: under the assumption ν <

(1 − 2β)/(2T − 1) of the mutual coherence ν, there holds (2T − 1)ν + 2β < 1.

Lemma 3.1. If ν < (1 − 2β)/(2T − 1), then for any ρ ∈ (((2T − 1)ν + 2β)2, 1) there exist s1, s2 ∈ (1/(1 −
Tν + ν − β), 1/(Tν + β)), s1 > s2, such that s2 = 1 + (Tν − ν + β)s1 and ρ = s2

2/s
2
1.

Proof. By the assumption v < (1 − 2β)/(2T − 1), Tν + β < 1 − Tν + ν − β. Hence for any s1 ∈ (1/(1 −
Tν + ν − β), 1/(Tν + β)), there holds

s1 > 1 + (Tν − ν + β)s1 and 1 + (Tν − ν + β)s1 >
1

1 − Tν + ν − β
,

i.e.,

1
Tν + β

> s1 > 1 + (Tν − ν + β)s1 >
1

1 − Tν + ν − β
.

Upon letting s2 = 1 + (Tν − ν + β)s1, we deduce

1
Tν + β

> s1 > s2 >
1

1 − Tν + ν − β
.

Now the monotonicity of the function f(s1) = s2/s1 over the interval (1/(1 −Tν + ν−β), 1/(Tν +β)), and 
the identities

1 + (Tν − ν + β)/(Tν + β)
1/(Tν + β) = (2T − 1)ν + 2β,

1 + (Tν − ν + β)/(1 − Tν + ν − β)
1/(1 − Tν + ν − β) = 1,

imply that there exists an s1 in the internal such that s2/s1 = √
ρ for any ρ ∈ (((2T − 1)ν + 2β)2, 1). �
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Next for any λ > 0 and s > 0, we denote by

Gλ,s �
{
i :

∣∣x∗
i

∣∣ ≥ √
2λs

}
. (3.1)

The set Gλ,s characterizes the true sparse signal x∗ (via level sets). The lemma below provides an important 
monotonicity relation on the active set Ak during the iteration, which is essential for showing the finite step 
convergence of the algorithm in Theorem 3.1 below.

Lemma 3.2. Let Assumption 2.1 hold, ν < (1 − 2β)/(2T − 1), ρ ∈ (((2T − 1)ν + 2β)2, 1), and s1 and s2 be 
defined in Lemma 3.1. If Gλ,s1 ⊆ Ak ⊆ A∗, then Gλ,s2 ⊆ Ak+1 ⊆ A∗.

Proof. Let A = Ak, B = A∗\A. By Lemma 2.3, we have

|xi| ≥
∣∣x∗

i

∣∣− ‖x̄A‖�∞ ≥
∣∣x∗

i

∣∣− |B|ν‖x∗
B‖�∞ + ε

1 − (|A| − 1)ν , ∀i ∈ A,

|dj | ≤ |B|ν
(

1 + |A|ν
1 − (|A| − 1)ν

)∥∥x∗
B

∥∥
�∞

+ ε

(
1 + |A|ν

1 − (|A| − 1)ν

)
, ∀j ∈ I∗,

|di| ≥
∣∣x∗

i

∣∣ + ν
∥∥x∗

B

∥∥
�∞

− |B|ν
(

1 + |A|ν
1 − (|A| − 1)ν

)∥∥x∗
B

∥∥
�∞

− ε

(
1 + |A|ν

1 − (|A| − 1)ν

)
, ∀i ∈ B.

Using the fact ε ≤ β mini∈A∗ |x∗
i | ≤ β‖x∗

B‖�∞ from Assumption 2.1 and the trivial inequality |B|ν+β
1−Tν+ν+|B|ν ≤

Tν+β
1+ν , we arrive at

|B|ν
(

1 + |A|ν
1 − (|A| − 1)ν

)∥∥x∗
B

∥∥
�∞

+ ε

(
1 + |A|ν

1 − (|A| − 1)ν

)

≤ |B|ν + β

1 − Tν + ν + |B|ν (1 + ν)
∥∥x∗

B

∥∥
�∞

≤ (Tν + β)
∥∥x∗

B

∥∥
�∞

.

Consequently,

|dj | ≤ (Tν + β)
∥∥x∗

B

∥∥
�∞

, ∀j ∈ I∗,

|di| ≥
∣∣x∗

i

∣∣− (Tν − ν + β)
∥∥x∗

B

∥∥
�∞

, ∀i ∈ B.

It follows from the assumption Gλ,s1 ⊆ A = Ak that ‖x∗
B‖�∞ < s1

√
2λ. Then for all j ∈ I∗, we have

|dj | < s1(Tν + β)
√

2λ <
√

2λ,

i.e., j ∈ Ik+1. This shows Ak+1 ⊆ A∗. For any i ∈ I ∩Gλ,s2 , we have

|di| > s2
√

2λ− (Tν − ν + β)s1
√

2λ ≥
√

2λ.

This implies i ∈ Ak+1 by (2.4). It remains to show that for any i ∈ A ∩Gλ,s2 , i ∈ Ak+1. Clearly, if A = ∅, 
the assertion holds. Otherwise

|xi| ≥
∣∣x∗

i

∣∣− |B|ν + β

1 − (|A| − 1)ν
∥∥x∗

B

∥∥
�∞

> s2
√

2λ− (Tν − ν + β)s1
√

2λ ≥
√

2λ,

where the last line follows from the elementary inequality
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|B|ν + β

1 − (|A| − 1)ν
≤ Tν − ν + β.

This together with (2.4) also implies i ∈ Ak+1. This concludes the proof of the lemma. �
Now we can state the convergence result.

Theorem 3.1. Let Assumption 2.1 hold, and ν < (1 −2β)/(2T − 1). Then for any ρ ∈ (((2T −1)ν+2β)2, 1), 
Algorithm 1 converges in finite steps.

Proof. For each λk-problem, we denote by Ak,0 and Ak,� the active set for the initial guess and the last 
inner step (i.e., A(λk) in Algorithm 1), respectively. Now with s1 and s2 from Lemma 3.1, there holds 
Gλ,s1 ⊂ Gλ,s2 , and using Lemma 3.2, for any index k before the stopping criterion at line 10 of Algorithm 1
is reached, there hold

Gλk,s1 ⊆ Ak,0 and Gλk,s2 ⊆ Ak,�. (3.2)

Note that for k = 0, Gλ0,s2 = ∅ and thus the assertion holds. To see this, it suffices to check ‖x∗‖�∞ <

s2‖Ψ ty‖�∞ . By Lemma 2.1 and the inequality s2 > 1/(1 − Tν + ν − β) we obtain that
∥∥Ψ ty

∥∥
�∞

≥
∥∥Ψ t

A∗ΨA∗x∗
A∗

∥∥
�∞

−
∥∥Ψ tη

∥∥
�∞

≥
(
1 − (T − 1)ν

)∥∥x∗∥∥
�∞

− ε >
∥∥x∗∥∥

�∞
/s2.

Now for k > 0, it follows by mathematical induction and the relation Ak,� = Ak+1,0. It follows from (3.2)
that during the iteration, the active set Ak,� always lies in A∗. Further, for k sufficiently large, by Lemma 2.5, 
the stopping criterion at line 10 must be reached and thus the algorithm terminates; otherwise

A∗ ⊆ Gλk,s1 ,

then the stopping criterion at line 10 is satisfied, which leads to a contradiction. �
Next we turn to the convergence of Algorithm 1 under the RIP condition. Let 1 − (2

√
T + 1)δ > 2β, an 

argument analogous to Lemma 3.1 implies that for any 
√
ρ ∈ ((2δ

√
T + 2β)/(1 − δ), 1) there exist s1 and 

s2 such that

1 − δ

δ
√
T + β

> s1 > s2 >
1 − δ

1 − δ − δ
√
T − β

, s2 = 1 + δ
√
T + β

1 − δ
s1,

s2

s1
= √

ρ. (3.3)

The next result is an analogue of Lemma 3.2.

Lemma 3.3. Let Assumption 2.1 hold, δ � δT+1 ≤ (1 − 2β)/(2
√
T + 1), and 

√
ρ ∈ ((2δ

√
T + 2β)/(1 − δ), 1). 

Let s1 and s2 are defined by (3.3). If Gλ,s1 ⊆ Ak ⊆ A∗, then Gλ,s2 ⊆ Ak+1 ⊆ A∗.

Proof. Let A = Ak, B = A∗\A. Using the notation in Lemma 2.3, we have

|xi| ≥
∣∣x∗

i

∣∣− ‖x̄A‖ ≥
∣∣x∗

i

∣∣− δ‖x∗
B‖ + ε

1 − δ
, ∀i ∈ A,

|dj | ≤ δ
∥∥x∗

B

∥∥ + ε + δ‖x̄A‖ ≤ δ‖x∗
B‖ + ε

1 − δ
, ∀j ∈ I∗,

|di| ≥
∣∣x∗

i

∣∣− δ
∥∥x∗

B

∥∥− ε− δ‖x̄A‖ ≥
∣∣x∗

i

∣∣− δ‖x∗
B‖ + ε

, ∀i ∈ B.
1 − δ



JID:YACHA AID:1008 /FLA [m3L; v1.142; Prn:20/10/2014; 11:00] P.16 (1-27)
16 Y. Jiao et al. / Appl. Comput. Harmon. Anal. ••• (••••) •••–•••
By the assumption Gλ,s1 ⊆ Ak, we have ‖x∗
B‖�∞ < s1

√
2λ. Now using the relation s1 < (1 − δ)/(δ

√
T + β)

and Assumption 2.1, we deduce

δ‖x∗
B‖ + ε

1 − δ
≤ δ

√
T + β

1 − δ

∥∥x∗
B

∥∥
�∞

<
√

2λ.

Thus for j ∈ I∗, |di| <
√

2λ, i.e., Ak+1 ⊂ A∗. Similarly, using the relations s2 = 1 + s1(δ
√
T + β)/(1 − δ)

and s1 > (1 − δ)/(1 − δ − δ
√
T − β), we arrive at that for any i ∈ Gλ,s2 , there holds

∣∣x∗
i

∣∣− δ‖x∗
B‖ + ε

1 − δ
> s2

√
2λ− δ

√
T + β

1 − δ
s1
√

2λ =
√

2λ.

This implies that for i ∈ Gλ,s2 ∩A, |xi| >
√

2λ, and for i ∈ Gλ,s2 ∩ I, |di| >
√

2λ. Consequently, (2.4) yields 
the desired relation (Gλ,s2 ∩A) ⊆ Ak+1, and this concludes the proof of the lemma. �

Now we can state the convergence of Algorithm 1 under the RIP assumption. The proof is similar to that 
for Theorem 3.1, and hence omitted.

Theorem 3.2. Let Assumption 2.1 hold, and δ � δT+1 ≤ (1 − 2β)/(2
√
T + 1). Then for any 

√
ρ ∈ ((2δ

√
T +

2β)/(1 − δ), 1), Algorithm 1 converges in finite steps.

Remark 3.1. Theorems 3.1 and 3.2 indicate that under designated assumptions, Algorithm 1 converges in 
finite steps, and the active set A(λk) remains a subset of the true active set A∗.

Corollary 3.1. Let the assumptions in Theorem 2.1 hold. Then Algorithm 1 terminates at the oracle solu-
tion xo.

Proof. First, we note the monotonicity relation A(λk) ⊂ A∗ before the stopping criterion at line 10 of 
Algorithm 1 is reached. For any A � A∗, let x = Ψ†

Ay. Then by the argument in the proof of Theorem 2.1, 
we have

Jλ(x) = 1
2‖Ψx− y‖2 + λ|A| > 1

2ε
2 + λT ⇒ ‖Ψx− y‖ > ε,

which implies that the stopping criterion at line 10 in Algorithm 1 cannot be satisfied until the oracle 
solution xo is reached. �
3.3. Connections with other algorithms

Now we discuss the connections of Algorithm 1 with three existing greedy methods, i.e., orthogonal 
matching pursuit (OMP), iterative hard thresholding (IHT) and hard thresholding pursuit (HTP).

Connection with the OMP To prove the convergence of Algorithm 1, we require either the MIP condition 
(ν < (1 − 2β)/(2T − 1)) or the RIP condition (δT+1 ≤ (1 − 2β)/(2

√
T + 1)) on the sensing matrix Ψ . 

These assumptions have been used to analyze the OMP before: the MIP appeared in [8] and the RIP 
appeared in [21]. Further, for the OMP, the MIP assumption is fairly sharp, but the RIP assumption can 
be improved [45,28]. Our convergence analysis under these assumptions, unsurprisingly, follows the same 
line of thought as that for the OMP, in that we require the active set A(λk) always lies in the true active 
set A∗ throughout the iteration. However, we note that this requirement is unnecessary for implementing 
the PDASC algorithm, since the active set A(λk) can move inside and outside the true active set A∗ during 
the iteration. The numerical examples in Section 4 below confirm this observation. This makes the PDASC 
much more flexible than the OMP.
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Fig. 1. The influence of the algorithmic parameters (N , Jmax and ε) on the exact recovery probability.

Connection with the IHT and HTP The IHT due to Blumensath and Davies [6] also defines the active 
set by both primal and dual variables, but with a projection step, i.e., hard thresholding, in place of the 
least-squares step (cf. Step 7) in the PDASC algorithm. The HTP due to Foucart [19] can be viewed a 
primal-dual active set method in the T -version, i.e., at each iteration, the active set is chosen by the first T
components based on primal and dual variables. This is equivalent to a variable regularization parameter λ, 
where 

√
2λ is set to the T -th component of |xk + dk| at each iteration. The convergence of IHT and HTP 

were provided under RIP condition, with RIP constants being δ3T ≤ 1/
√

32 [6] and δ3T ≤ 1/
√

3 [19], 
respectively. These results are stronger than our convergence result based on the RIP, i.e., Theorem 3.2, but 
the former require an a priori knowledge of the exact sparsity level T . In addition, the IHT has also been 
applied to the Lagrange formulation (1.2) [5], but the convergence seems unknown.

4. Numerical tests and discussions

In this section we present numerical examples to illustrate the efficiency and accuracy, and the convergence 
behavior of the proposed PDASC algorithm. The sensing matrix Ψ is of size n × p, the true solution x∗ is a 
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Fig. 2. Numerical results for random Gaussian (top row, R = 100, n = 500, p = 1000, σ = 1e−3), random Bernoulli (middle row, 
R = 1000, n = 210, p = 212, σ = 1e−3) and partial DCT (bottom row, R = 1000, n = 211, p = 213, σ = 1e−3) sensing matrix. 
The parameters N and Jmax are set to N = 50 and Jmax = 1, respectively.

T -sparse signal with an active set A∗. The dynamical range R of the true signal x∗ is defined by R = M/m, 
with M = max{|x∗

i : i ∈ A∗|} and m = min{|x∗
i | : i ∈ A∗}. The data y is generated by

y = Ψx∗ + η,

where η denotes the measurement noise, with each entry ηi following the Gaussian distribution N(0, σ2)
with mean zero and standard deviation σ. The exact noise level ε is given by ε = ‖η‖2.

In Algorithm 1, we always take λ0 = 1
2‖Ψ ty‖2

�∞ , and λmin = 1e−15λ0. The choice of the number of grid 
points N and the maximum number Jmax of inner iterations will be specified later.

Step 7 of Algorithm 1 requires solving a linear system, which is the most expensive piece of the algorithm. 
A direct linear solver can be expensive for large-scale problems or even infeasible when the sensing matrix Ψ
is given only implicitly. Hence, in practice one may employ iterative solvers for symmetric positive definite 
systems, e.g., (preconditioned) conjugate gradient (CG) method. In the following numerical examples, when 
the matrix Ψ is the partial DCT or composition of partial FFT with an inverse wavelet transform (for 1D 
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Fig. 3. The number of iterations of PDASC at each λk for random Gaussian (top left with R = 1000, n = 500, p = 1000, T = 200, 
σ = 1e−3), random Bernoulli (top right with R = 1000, n = 210, p = 212, T = 28, σ = 1e−3) and partial DCT (bottom with 
R = 1000, n = 211, p = 213, T = 28, σ = 1e−3) sensing matrix. The parameters N and Jmax are set to N = 50 and Jmax = 5, 
respectively.

signal or 2D MRI image), we employ the CG method to solve the resulting linear systems. In practice, only 
a few CG steps are needed, in view of the good conditioning of the linear systems and a good initial guess 
from the continuation strategy.

All the computations were performed on a dual core desktop with 3.40 GHz and 8 GB RAM using
MATLAB version 2013b. The MATLAB package PDASCl0 for reproducing all the numerical results can be found 
at http :/ /www0 .cs .ucl .ac .uk /staff /b .jin /companioncode .html.

4.1. The behavior of the PDASC algorithm

First we study the influence of the free parameters in the PDASC algorithm on the exact support recovery 
probability. To this end, we fix Ψ to be a 500 ×1000 random Gaussian matrix, and σ = 1e−2. All the results 
are computed based on 100 independent realizations of the problem setup. To this end, we consider the 
following three settings:

(a) Jmax = 5, and varying N ; see Fig. 1(a).
(b) N = 100, and varying Jmax ; see Fig. 1(b).
(c) N = 100, Jmax = 5, and an approximate noise level ε̄; see Fig. 1(c).

We observe that the influence of the parameters N and Jmax is very mild on the exact support recovery 
probability. In particular, a reasonably small value for these parameters (e.g. N = 50, Jmax = 1) is sufficient 
for accurately recovering the exact active set A∗. Unsurprisingly, a very small value of N can degrade the 
accuracy of support recovery greatly, due to insufficient resolution of the solution path. In practice, the 
exact noise level ε is not always available, and often only an approximate estimate ε̄ is provided. The use of 

http://www0.cs.ucl.ac.uk/staff/b.jin/companioncode.html


JID:YACHA AID:1008 /FLA [m3L; v1.142; Prn:20/10/2014; 11:00] P.20 (1-27)
20 Y. Jiao et al. / Appl. Comput. Harmon. Anal. ••• (••••) •••–•••
Fig. 4. The exact support recovery probability for four different dynamical ranges: R = 1, 10, 103, and 105.

the estimate ε̄ in place of the exact one ε in Algorithm 1 may sacrifice the exact recovery probability. Hence 
it is important to study the sensitivity of Algorithm 1 with respect to the variation of the parameter ε. We 
observe from Fig. 1(c) that the use of the estimate ε̄ does not affect the recovery probability much, unless 
it is grossly erroneous. The case of an overly underestimated noise level is especially dangerous, which may 
render the reconstruction completely useless due to an insufficient amount of regularization.

To gain further insight into the PDASC algorithm, in Fig. 2, we show the evolution of the active set 
(for simplicity let Ak = A(λk)). It is observed that the active set Ak can generally move both “inside” and 
“outside” of the true active set A∗. This observation is valid for random Gaussian, random Bernoulli and 
partial DCT sensing matrices. This behavior is in sharp contrast to the OMP, where the size of the active 
set is monotonically increasing during the iteration, by its construction. The flexible change in the active 
set might be essential for the efficiency of the PDASC algorithm.

For each λk-problem, with x(λk−1) (x(λ0) = 0) as the initial guess, the PDASC generally reaches con-
vergence within a few iterations, typically two or three, cf. Fig. 3, which is observed for random Gaussian, 
random Bernoulli and partial DCT sensing matrices. This is attributed to the local superlinear convergence 
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Table 4.1
Numerical results (CPU time and errors) for medium-scale problems, with random Gaussian sensing matrix Ψ , of size p =
10 000, 15 000, 20 000, 25 000, 30 000, n = �p/4�, T = �n/3�. The dynamical range R is R = 1000, and the noise variance 
σ is σ = 1e−2.

p Method Time(s) Relative �2 error Absolute �∞ error
10 000 PDASC(50,1) 1.46 4.49e−5 3.81e−2

PDASC(100,5) 2.82 4.49e−5 3.81e−2
OMP 15.1 4.49e−5 3.81e−2
GreedyGP 16.5 8.30e−5 1.32e−1
AIHT 4.23 4.49e−5 3.81e−2
HTP 1.54 4.49e−5 3.81e−2
CoSaMP 7.98 8.87e−2 6.34e+1

15 000 PDASC(50,1) 3.44 4.61e−5 4.56e−2
PDASC(100,5) 6.63 4.61e−5 4.56e−2
OMP 51.3 4.61e−5 4.55e−2
GreedyGP 54.8 7.17e−5 1.24e−1
AIHT 9.33 4.61e−5 4.56e−2
HTP 3.88 4.61e−5 4.56e−2
CoSaMP 22.6 8.66e−2 6.16e+1

20 000 PDASC(50,1) 6.47 4.56e−5 4.34e−2
PDASC(100,5) 12.3 4.56e−5 4.34e−2
OMP 119 4.56e−5 4.34e−2
GreedyGP 127 6.29e−5 1.12e−1
AIHT 16.2 4.56e−5 4.34e−2
HTP 7.12 4.56e−5 4.34e−2
CoSaMP 50.1 8.68e−1 6.59e+1

25 000 PDASC(50,1) 11.1 4.55e−5 4.61e−2
PDASC(100,5) 20.3 4.55e−5 4.61e−2
OMP 230 4.55e−5 4.61e−2
GreedyGP 245 5.87e−5 1.10e−1
AIHT 25.2 4.55e−5 4.61e−2
HTP 12.0 4.55e−5 4.61e−2
CoSaMP 90.9 9.29e−1 6.71e+1

30 000 PDASC(50,1) 17.5 4.53e−5 4.53e−2
PDASC(100,5) 31.8 4.53e−5 4.53e−2
OMP 399 4.53e−5 4.53e−2
GreedyGP 430 5.62e−5 1.07e−1
AIHT 36.9 4.53e−5 4.53e−2
HTP 18.6 4.53e−5 4.53e−2
CoSaMP 153 9.32e−2 7.61e+1

of the PDAS algorithm. Hence, when coupled with the continuation strategy, the overall PDASC procedure 
is very efficient.

4.2. Comparison with existing algorithms

In this part, we compare Algorithm 1 with five state-of-the-art algorithms in the compressive sensing 
literature, including orthogonal matching pursuit (OMP) [34], greedy gradient pursuit (GreedyGP) [4], accel-
erated iterative hard thresholding (AIHT) [3], hard thresholding pursuit (HTP) [19], compressive sampling 
matching pursuit (CoSaMP) [29].

First, we consider the exact support recovery probability, i.e., the percentage of the reconstructions 
whose support agrees with the true active set A∗. To this end, we fix the sensing matrix Ψ as a 500 × 1000
random Gaussian matrix, σ = 1e−3, (N, Jmax) = (100, 5) or (50, 1), and all results are computed from 
100 independent realizations of the problem setup. Since a different dynamical range R may give different 
results, we take R = 1, 10, 1e3, 1e5 as four exemplary values. The numerical results are summarized in 
Fig. 4. We observe that when the dynamical range R is not very small, the proposed PDASC algorithm with 
(N, Jmax) = (100, 5) has a better exact support recovery probability, and that with the choice (N, Jmax) =
(50, 1) is also largely comparable with other algorithms.
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Table 4.2
Numerical results (CPU time and errors) for medium-scale problems, with random Bernoulli sensing matrix Ψ , of size p =
10 000, 15 000, 20 000, 25 000, 30 000, n = �p/4�, T = �n/4�. The dynamical range R is R = 10, and the noise variance σ
is σ = 1e−2.

p Method Time(s) Relative �2 error Absolute �∞ error
10 000 PDASC(50,1) 0.64 2.46e−3 3.82e−2

PDASC(100,5) 1.21 2.45e−3 3.82e−2
OMP 10.3 2.46e−3 3.83e−2
GreedyGP 12.8 2.40e−2 1.07e+0
AIHT 3.50 2.45e−3 3.82e−2
HTP 0.95 2.45e−3 3.82e−2
CoSaMP 4.93 5.00e−3 7.57e−2

15 000 PDASC(50,1) 1.49 2.53e−3 4.13e−2
PDASC(100,5) 2.85 2.52e−3 4.11e−2
OMP 34.6 2.52e−3 4.10e−2
GreedyGP 43.7 2.20e−2 1.07e+0
AIHT 8.38 2.52e−3 4.11e−2
HTP 2.35 2.52e−3 4.11e−2
CoSaMP 13.9 5.01e−3 7.75e−2

20 000 PDASC(50,1) 2.63 2.52e−3 3.96e−2
PDASC(100,5) 4.93 2.51e−3 3.97e−2
OMP 78.4 2.52e−3 3.99e−2
GreedyGP 96.4 2.41e−2 1.09e+0
AIHT 13.6 2.51e−3 3.97e−2
HTP 4.37 2.51e−3 3.97e−2
CoSaMP 29.0 5.10e−3 8.07e−2

25 000 PDASC(50,1) 4.37 2.50e−3 3.99e−2
PDASC(100,5) 8.30 2.49e−3 3.99e−2
OMP 157 2.49e−3 3.99e−2
GreedyGP 191 2.31e−2 1.08e+0
AIHT 20.1 2.49e−3 3.99e−2
HTP 7.36 2.49e−3 3.99e−2
CoSaMP 54.4 5.10e−3 7.98e−2

30 000 PDASC(50,1) 7.06 2.48e−3 4.19e−2
PDASC(100,5) 12.3 2.48e−3 4.18e−2
OMP 265 2.48e−3 4.18e−2
GreedyGP 325 2.09e−2 1.08e+0
AIHT 26.6 2.48e−3 4.18e−2
HTP 10.5 2.48e−3 4.18e−2
CoSaMP 85.6 5.00e−3 9.44e−2

To further illustrate the accuracy and efficiency of the proposed PDASC algorithm, we compare it with 
other greedy methods in terms of CPU time and reconstruction error. To this end, we fix σ = 1e−2, 
(N, Jmax) = (100, 5) or (50, 1). The numerical results for random Gaussian, random Bernoulli and partial 
DCT sensing matrices with different parameter tuples (R, n, p, T ) are shown in Tables 4.1–4.3, respectively. 
The results in the tables are computed from 10 independent realizations of the problem setup. It is observed 
that the PDASC algorithm yields reconstructions that are comparable with that by other methods, e.g., 
HTP and AIHT, but usually with less computing time. Further, we observe that it scales well with the 
problem size. By increasing the maximum number of inner iterations Jmax and the continuation steps N , 
one can improve the reconstruction accuracy slightly, but the enhancement is small. This indicates that with 
the “good” initial guess provided by the continuation strategy, one inner iteration is sufficient to achieve 
the desired accuracy, due to the fast local convergence of the PDASC algorithm, and thus it is also very 
efficient for large-scale problems.

Lastly, we consider one-dimensional signals and two-dimensional images. In this case the explicit form 
of the sensing matrix Ψ may be not available, and we employ the CG method for the least-squares step at 
line 7 of Algorithm 1. The most natural initial guess for the CG method for the λk-problem is the solution 
x(λk−1) (projected on the current active set), and the stopping criterion for the CG method is as follows: 
either the number of CG iterations is greater than a given (small) integer or the residual is smaller than a 
given tolerance. With the continuation strategy, a few (often one or two) CG iterations at the inner loop of 
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Table 4.3
Numerical results (CPU time and errors) for large-scale problems, with partial DCT sensing matrix Ψ , of size p = 213, 214, 215, 
216, 217, n = �p/4�, T = �n/3�. The dynamical range R is R = 100, and the noise variance σ is σ = 1e−2.

p Method Time(s) Relative �2 error Absolute �∞ error
p = 213 PDASC(50,1) 0.21 7.09e−4 7.93e−2

PDASC(100,5) 0.39 7.08e−4 7.89e−2
OMP 2.26 7.08e−4 7.93e−2
GreedyGP 0.74 9.99e−4 1.68e−1
AIHT 0.30 7.08e−4 7.93e−2
HTP 0.32 7.08e−4 7.87e−2
CoSaMP 0.50 3.63e−1 3.24e+1

214 PDASC(50,1) 0.35 6.97e−4 8.60e−2
PDASC(100,5) 0.66 6.95e−4 8.52e−2
OMP 11.3 6.95e−4 8.49e−2
GreedyGP 2.52 9.01e−4 2.49e−1
AIHT 0.48 6.95e−4 8.50e−2
HTP 0.52 6.96e−4 8.57e−2
CoSaMP 0.85 3.87e−1 3.63e+1

215 PDASC(50,1) 0.64 7.16e−4 8.20e−2
PDASC(100,5) 1.20 7.83e−4 4.58e−1
OMP 66.8 9.96e−4 1.01e+0
GreedyGP 9.50 7.98e−4 1.90e−1
AIHT 0.98 7.14e−4 8.23e−2
HTP 0.97 7.15e−4 8.24e−2
CoSaMP 1.53 3.79e−1 3.71e+1

216 PDASC(50,1) 1.23 7.43e−4 2.75e−1
PDASC(100,5) 2.30 7.37e−4 1.81e−1
OMP 423 1.11e−3 1.03e+0
GreedyGP 34.2 8.39e−4 5.20e−1
AIHT 1.87 7.07e−4 8.80e−2
HTP 2.12 7.08e−4 8.78e−2
CoSaMP 2.77 3.87e−1 3.93e+1

217 PDASC(50,1) 3.04 7.47e−4 3.73e−1
PDASC(100,5) 6.29 7.43e−4 1.95e−2
OMP 3.17e+3 1.11e−3 1.03e+0
GreedyGP 200 7.96e−4 5.99e−1
AIHT 4.76 7.13e−4 9.86e−2
HTP 4.90 7.14e−4 9.88e−2
CoSaMP 7.67 3.91e−1 4.25e+1

Algorithm 1 suffice the desired accuracy. Numerically we find that the choice (N, Jmax) = (50, 1) and one 
CG iteration for the least-squares problem works well in practice, and thus we present the results below only 
for this particular choice. This surprising “superconvergence” phenomenon awaits theoretical justification.

For the one-dimensional signal, the sampling matrix Ψ is of size 665 × 1024, and it consists of applying a 
partial FFT and an inverse wavelet transform (with two level of Daubechies 1 wavelet), and the signal under 
wavelet transformation has 247 nonzero entries and σ = 1e−4, N = 50, Jmax = 1. The results are shown in 
Fig. 5 and Table 4.4. The reconstructions by all the methods, except the AIHT and CoSaMP, are visually 
very appealing and in excellent agreement with the exact solution. The reconstructions by the AIHT and 
CoSaMP suffer from pronounced oscillations. This is further confirmed by the PSNR values which is defined 
as

PSNR = 10 · log V 2

MSE

where V is the maximum absolute value of the reconstruction and the true solution, and MSE is the mean 
squared error of the reconstruction, cf. Table 4.4. One finds that except the CoSaMP, all other methods can 
yield almost identical reconstructions within similar computational efforts.

For the two-dimensional MRI image, the sampling matrix Ψ amounts to a partial FFT and an inverse 
wavelet transform, and it has a size 29 729 × 26 2144. The image under wavelet transformation (with four 
level of Daubechies 1 wavelet) has 8450 nonzero entries and σ = 1e−3, N = 50, and Jmax = 1. The numerical 
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Fig. 5. Reconstruction results of the one-dimension signal.

Table 4.4
One-dimensional signal: n = 665, p =
1024, T = 247, σ = 1e−4.

Method CPU time (s) PSNR
PDASC 0.49 53
OMP 1.45 49
GreedyGp 0.76 49
AIHT 0.58 34
HTP 0.40 51
CoSaMP 0.91 26

Table 4.5
Two-dimensional image: n = 29 729, 
p = 26 2144, T = 8450, σ = 1e−3.

Method CPU time (s) PSNR
PDASC 22.33 62
GreedyGP 448.7 63
AIHT 25.77 62
HTP 20.51 58
CoSaMP 48.74 56

results are shown in Fig. 6 and Table 4.5. Since OMP is too costly for this example (more than one hour), 
we do not present the corresponding numerical result. All other methods produce similar results. Therefore 
proposed PDASC algorithm is competitive with state-of-the-art algorithms, and feasible for large-scale 
problems with implicit operators.
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Fig. 6. Reconstruction results of the two-dimensional Logan–Shepp image.

5. Conclusion

We have developed an efficient and accurate primal-dual active set with continuation algorithm for the 
�0 penalized least-squares problem arising in compressive sensing. It combines the fast local convergence of 
the active set technique and the globalizing property of the continuation technique. The global finite step 
convergence of the algorithm was established under the mutual incoherence property or restricted isometry 
property on the sensing matrix. Our extensive numerical results indicate that the proposed algorithm is 
competitive with state-of-the-art algorithms in terms of efficiency, accuracy and exact recovery probability, 
without a knowledge of the exact sparsity level.

Our numerical experiment indicates that the conjugate gradient method is very effective for solving the 
least-squares problems arising in the PDAS iterations. A complete analysis of the excellent convergence 
behavior is of significant interest. Further, the primal dual active set with continuation algorithm extends 
naturally to other popular nonconvex sparse models, e.g., bridge penalty, smoothly clipped absolute devi-
ation and minmax concave penalty. However, the convergence analysis of the algorithm for these penalties 
remains unclear.
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