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Abstract: In this paper, an inverse Robin problem for an elliptic equation is investigated. TheRobin coe�cient
is assumed to be a small perturbation from a reference coe�cient, hence a sparse structure is a priori known.
AnLq-regularized output least square formulation is consideredwith q ∈ (0, 1). The existence of theminimizer
is proved. The convergence of the �nite element discretization with respect tomesh size is shown. Amodi�ed
Newton algorithm is applied to solve the smoothing�rst order optimality system. Two-dimensional and three-
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1 Introduction
In this paper, we consider the inversion of the Robin coe�cient ã in the following elliptic equationwithmixed
boundary conditions:

{{{{{{
{{{{{{
{

−∇ ⋅ (á∇u) = f in Ø,

á
àu
àn

= v on Ãc,

á
àu
àn

+ ãu = ãua on Ãi,

(1.1)

where Ø ⊂ ℝd (d = 2, 3) is an open bounded polyhedral domain with boundary Ã = Ãc ∪ Ãi. This equation
has a lot of applications. For example, in thermal engineering, it describes steady-state heat transfer
with convective conduction occurring at the interface Ãi between the conducting body and the ambient
environment, where á, f, v, ua refer to the heat conductivity, the heat source, the heat �ux and the ambient
temperature, respectively. The disjointed boundaries Ãc and Ãi refer to the experimentally accessible and
inaccessible parts, respectively. The Robin coe�cient ã is closely related to the physical and chemical prop-
erty of thematerial on the boundary. In some applications such as corrosion detection [9] and nondestructive
detection of metal-oxide-silicon �eld e�ect transistor (MOSFET) [6], one needs to obtain the information of
the material on the inaccessible boundary Ãi which naturally leads to the inverse problem of estimating the
Robin coe�cient ã on the boundary Ãi from the Cauchy data

u = gä and á
àu
àn

= v on Ãc

measured on the boundary Ãc. It is known that the Cauchy problem is severely ill-posed in the sense that the
solution does not depend on the data continuously [2]. Several regularization methods have been proposed
to overcome this di�culties based on di�erent a priori information [3, 7, 9, 13–15].

In practical scenarios such as corrosion detection the defects may only occurs at small spots of the
device, while in MOSFET [6] the imperfect contact usually occurs only locally and thus the di�erence
between the pro�le to be identi�ed and the reference pro�le may have a small support. Hence it is natural
to consider the inverse Robin problem with such a priori information. The investigation of regularization
schemes with sparsity promoting regularizer has been one of the hottest topics in the �eld of inverse
problems over the last ten years, see [12] for an overview. A sparsity promoted L1-regularization formulation
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with box constraints for inverse Robin problem is considered in [16]. However if the noise is very large or the
support of the desired function is very small, the L1-regularization may not have a satisfactory result. On the
other hand, it is generally believed that ℓq- and Lq-regularization (q ∈ [0, 1)) approachmay capture the sparse
structure better than ℓ1 or L1-regularization, see [4, 11].

Let ã† and ã̂ be the reference Robin coe�cient and the coe�cient to be recovered, respectively. It is
reasonable to assume that ã† − ã̂has a small support and exhibits a sparse structure. To recover ã̂, we consider
the following Lq-regularized functional to handle possible large noise and small support:

Jë,â(ã) =
1
2
‖u(ã) − gä‖2L2(Ãc) + ë‖ã − ã†‖Lq(Ãi) + â

2
|ã|2H1(Ãi),

where u(ã) is the solution of (1.1) for a given ã. The �rst �delity term in Jë,â �ts the observation data gä,
the second Lq-regularization term enforces the sparsity, and the last H1-term stabilizes the formulation
whereas the regularization parameter ë, â > 0 tradeo� these three terms. To ensure thewell-posedness of u(ã)
we assume that ã ∈ A, where

A = {ã ∈ H1(Ãi) : 0 < ã ≤ ã(x) ≤ ã < +∞ for all x ∈ Ãi}.

Now the Robin coe�cient is recovered by:

Problem 1.1. Consider
min
ã∈A

Jë,â(ã).

Due to the nonconvex and nonsmooth structure of the Lq-norm, to �nd the e�cient numerical algorithm is
nontrivial. The iteratively reweighted least squares method [4, 11] and the iterative thresholding algorithm
were applied to solve the corresponding optimization problem, see [12] for an overview. In this article we
consider the smoothed version of the Lq-norm and adopt a Newton type algorithm to solve its �rst order
necessary Karush–Kuhn–Tucker system.

The rest of this paper is organized as follows. In Section 2 we study the existence and stability of the min-
imizers of the Lq-regularized minimization problem and its smoothed version. Finite element discretization
is given in Section 3, and the convergence of the �nite element solution is proved. In Section 4 a modi�ed
Newton algorithm is proposed to solve the smoothed minimization problem. Numerical experiments for the
two- and three-dimensional cases are given in Section 5 to verify the e�ciency of our approach.

We end this section with some notations and assumptions. For a given real number r, letHr be the stan-
dard Sobolev space endowed with the norm ‖ ⋅ ‖Hr and the seminorm | ⋅ |Hr , see [1] for details. By L2(Ãc)
and L2(Ãi) we denote the standard square integrable function spaces endowed with the norm ‖ ⋅ ‖L2(Ãc)
and ‖ ⋅ ‖L2(Ãi) respectively. For q ∈ (0, 1) we de�ne Lq(Ãi) as the complete metric space of measurable func-
tions ã(s) satisfying

‖ã‖Lq(Ãi) := ∫
Ãi |ã(s)|

q ds < +∞.

We assume á ∈ H1(Ø) with 0 < c ≤ á(x) ≤ ̄c < ∞, f ∈ (H1(Ø))�, gä ∈ H
12 (Ø), v ∈ (H

12 (Ø))�.

2 Lq-regularization
We �rst prove the existence of a minimizer of Problem 1.1. Since the Lq-space lacks of weak lower semi-
continuity properties, the existence is not straightforward. We will follow the idea as in [11].

Theorem 2.1. For any â, ë > 0, there exists at least one minimizer ã∗ to Problem 1.1.

Proof. It is known that A is nonempty and Jë,â(ã) is bounded from below, and thus there exists a minimum
sequences {ãk}k such that

lim
k→+∞

Jë,â(ã
k) = inf

ã
Jë,â(ã).
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Then {|ãk|H1(Ãi)}k and {‖ãk‖Lq(Ãi)}k are bounded sequences. Decompose ãk = ãk0 + ãk1 , where

ãk0 =
1
|Ãi|

∫
Ãi ã

k(s) ds and ãk1 = ãk − ãk0 .

Observing the fact that
1
|Ãi|

∫
Ãi ã

k
1 (s) ds = 0,

then {‖ãk1 ‖H1(Ãi)}k is bounded by Poincaré inequality. Therefore {‖ãk1 ‖Lq(Ãi)}k is bounded, and hence

‖ãk0 ‖Lq(Ãi) ≤ ‖ãk‖Lq(Ãi) + ‖ãk1 ‖Lq(Ãi)
is bounded. Since ãk0 is a constant function, we have {‖ãk‖H1(Ãi)}k is bounded.We pass to a subsequence which
is still denoted by {ãk}k. There exists some ã∗ ∈ H1(Ãi) ∩ A such that ãk → ã∗ weakly inH1(Ãi). Then

‖ãk − ã∗‖L2(Ãi) → 0 (2.1)

follows from the compact embedding fromH1(Ãi) into L2(Ãi). By [14, Theorem 3.2], we get

‖u(ãk) − u(ã∗)‖L2(Ãc) → 0. (2.2)

By the Hölder inequality we obtain that

‖ãk − ã†‖Lq(Ãi) → ‖ã∗ − ã†‖Lq(Ãi). (2.3)

Combining (2.2)–(2.3) with the weak lower semicontinuity of the H1-seminorm, we obtain that ã∗ is a mini-
mizer of Problem 1.1.

Remark 2.2. In this article we focus on the minimization Problem 1.1 with �xed parameters ë and â. But
the choice of proper regularization parameters ë and â is also important in both regularization theory and
numerical realization. Let the true Robin coe�cient be ã̂ ∈ A and the noise level be ä = ‖u(ã̂) − gä‖L2(Ãc).
By the standard Tikhonov regularization theory (e.g. [5]), we can prove that if the regularization parameters
are chosen properly in the sense

ë(ä)
â(ä)

= constant and lim
ä→0+max{â(ä), ä2

â(ä)
} = 0, (2.4)

then theminimizer ã∗ë(ä),â(ä) of Problem 1.1 converges to ã̂ in L2(Ãi)when noise level ä → 0+. The proof is rather
standard. Since

Jë(ä),â(ä)(ã
∗
ë(ä),â(ä)) ≤ Jë(ä),â(ä)(ã̂) =

ä2

2
+ ë(ä)‖ã̂‖Lq(Ãi) + â(ä)

2
|ã̂|2H1(Ãi) (2.5)

and assumption (2.4), by a similar argument as in Theorem 2.1 we have {ã∗ë(ä),â(ä)}ä is bounded in Lq(Ãi)
and H1(Ãi). Hence there exist a subsequence {ã∗ë(äk),â(äk)}äk and ã̃ such that ã∗ë(äk),â(äk) weakly converge to ã̃
inH1(Ãi). From [14, Theorem 3.2], (2.5) and (2.4) we have

‖u(ã̃) − u(ã̂)‖L2(Ãc) = limäk→0+ ‖u(ã∗ë(äk),â(äk)) − u(ã̂)‖

≤ lim
äk→0+(äk + ‖u(ã∗ë(äk),â(äk)) − gäk‖)

≤ lim
äk→0+ √2Jë(äk),â(äk)(ã∗ë(äk),â(äk)) = 0.

Due to the uniqueness of the inverse Robin problem, which can be obtained by the unique continuation
argument, see [10], we deduce that ã̃ = ã̂. Moreover this uniqueness implies the convergence for the sequence,
and hence

lim
ä→0+ ‖ã∗ë(ä),â(ä) − ã̂‖L2(Ãi) = 0.
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By applying similar argument as in [14, Theorem 3.3] and (2.3), one can show that theminimizer of Problem 1.1
continuously depends on the observing data gä.

Theorem 2.3. Let ãk be a minimizer of Problem 1.1 with gä replaced by gk. If gk → gä in L2(Ãc), then there exists
a subsequence of ãk converging to ã∗ in L2(Ãi).

To overcome the numerical di�cult of Lq-penalty, we consider the following smooth version of Problem 1.1.

Problem 2.4. Consider

min
ã∈A

Jåë,â(ã) =
1
2
‖u(ã) − gä‖2L2(Ãc) + ë""""√(ã − ã†)2 + å2""""Lq(Ãi) + â

2
|ã|2H1(Ãi),

where å > 0 is a small given parameter.

Theorem 2.5. For any â, ë, å > 0, there exists at least one minimizer ãå to Problem 2.4.

Proof. If (2.1) holds, then by simple computation we have

""""√(ãk − ã†)2 + å2""""Lq(Ãi) → """"√(ã∗ − ã†)2 + å2""""Lq(Ãi). (2.6)

Therefore the proof is similar to the proof of Theorem 2.1 and we omit it here.

The next theorem shows that the solution to Problem 2.4 converges to the solution to Problem 1.1 as å goes
to 0.

Theorem 2.6. Let åk → 0+ and ãk be a minimizer of Jåkë,â. Then the sequence {ãk}k contains a subsequence that
converges in L2(Ãi) to a minimizer of Problem 1.1.

Proof. A similar argument as the proof of Theorem 2.1 shows that {ãk}k contains a subsequence (still denoted
by {ãk}k) converges to some ã∗ such that (2.1) and

Jë,â(ã
∗) ≤ lim inf

k→∞
Jë,â(ã

k)

hold. Then we need to show that ã∗ is the minimizer of Problem 1.1. This part is similar as [16, Theorem 3.3],
we include here the main steps for completeness. For any given ã ∈ A, by the inequality

∫
Ãi (|ã − ã†|2 + å2k)

q/2 ≤ ∫
Ãi (|ã − ã†| + åk)

q ≤ ∫
Ãi (|ã − ã†|q + åqk)

we have
Jë,â(ã) ≤ Jåkë,â(ã) ≤ Jë,â(ã) + ëåqk|Ãi|.

Therefore, for any ã ∈ A, there holds

Jë,â(ã) + ëåqk|Ãi| ≥ Jåkë,â(ã) ≥ Jåkë,â(ãk) ≥ Jë,â(ã
k).

Taking limit for k → ∞, we conclude that ã∗ is a minimizer of Problem 1.1.

3 Finite element approximation
In this section we consider the �nite element approximation for Problem 1.1 and Problem 2.4. Since the
argument and results are very similar for these two cases, we will focus on the latter one. A quasi-uniform
triangulation ofØ is denoted by Tℎ, the corresponding �nite element spaceVℎ and discrete admissible setAℎ

are de�ned by
Vℎ = {vℎ ∈ C(Ø̄) : vℎ|Δ ∈ P1(Δ) for all Δ ∈ Tℎ}, Aℎ = A ∩ Vℎ,Ãi ,

where Vℎ,Ãi is the restriction of Vℎ on Ãi. Then Problem 2.4 can be approximated as follows.
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Problem 3.1. Consider

min
ãℎ∈Aℎ Jå,ℎë,â(ãℎ) =

1
2
‖uℎ(ãℎ) − gä‖2L2(Ãc) + ë""""√(ãℎ − ã†)2 + å2""""Lq(Ãi) + â

2
|ãℎ|

2
H1(Ãi),

where uℎ(ãℎ) is the discrete solution of (1.1), i.e., for all õℎ ∈ Vℎ we have

∫
Ø

á∇uℎ(ãℎ) ⋅ ∇õℎ + ∫
Ãi ãℎuℎ(ãℎ)õℎ = ∫

Ãi ãℎua õℎ + ∫
Ãc v õℎ + ∫

Ø

fõℎ. (3.1)

Note that Problem 3.1 is a �nite-dimensional optimization problem. By virtue of the continuous and coercivity
of the discrete functional, the existence of a minimizer to Problem 3.1 is straightforward.

Theorem 3.2. For any â, ë, å > 0, there exists at least one minimizer ãℎ to Problem 3.1.

Next we show the convergence of the minimizers of the discrete optimization Problem 3.1 as the mesh size ℎ
goes to 0.

Theorem 3.3. Let {ãℎk }ℎk be a sequences of minimizers of Problem 3.1 as ℎk → 0. Then there is a subsequence
still denoted by {ãℎk }ℎk such that ãℎk converges strongly to ã∗, a minimizer of Problem 2.4, in L2(Ãi).

Proof. For simplicity uℎk (ãℎk ) is denoted by uℎk . By a similar argument as in Theorem 2.1, {ãℎk } is bounded
inH1(Ãi). Let õℎ = uℎk in equation (3.1). We �nd {uℎk } is also bounded inH1(Ø). By passing to a subsequence
which is still denoted by ℎk, we have

ãℎk → ã∗ weakly inH1(Ãi), uℎk → u∗ weakly inH1(Ø).

For any õ ∈ C∞(Ø), we choose õℎk ∈ Vℎk such that õℎk converges to õ strongly in H1(Ø). Taking limit in
equation (3.1), noticing theweak-strong convergence for �rst term and strong convergence for others, together
with a density argument, we obtain u∗ = u(ã∗). Then a similar argument as for Theorem 2.5 implies that

""""√(ãℎk − ã†)2 + å2""""Lq(Ãi) → """"√(ã∗ − ã†)2 + å2""""Lq(Ãi),
and hence

Jåë,â(ã
∗) ≤ lim inf

k
Jå,ℎë,â(ãℎk ).

Next we show that ã∗ is a minimizer of Problem 2.4. For any ã ∈ A ∩ C1(Ãi), let Iℎkã be its interpolation toAℎk .
Then by the standard approximation property of �nite element we have ‖Iℎkã − ã‖H1(Ãi) → 0, and hence
uℎk (Iℎkã) → u(ã) weakly inH1(Ø). It follows

Jåë,â(ã) = limk
Jå,ℎë,â(Iℎkã) ≥ lim infk

Jå,ℎë,â(ãℎk ) ≥ Jåë,â(ã
∗),

which implies that ã∗ is a minimizer of Problem 2.4.

4 KKT condition and a modi�ed Newton algorithm
In this sectionwe�rst derive the necessary optimal condition of the �nite element approximation Problem3.1.
Then we adopt a modi�ed Newton method to solve the KKT condition.

Theorem 4.1. Let ãℎ be a minimizer of Problem 2.4 such that the box constraint ã ≤ ãℎ ≤ ã never be active. Then
there exist uℎ, pℎ such that (ãℎ, uℎ, pℎ) satis�es the �rst-order necessary Karush–Kuhn–Tucker condition:

{{{{{{{{{{{{
{{{{{{{{{{{{
{

∫
Ø

á∇uℎ ⋅ ∇õℎ + ∫
Ãi ãℎuℎõℎ = ∫

Ãi ãℎuaõℎ + ∫
Ãc võℎ + ∫

Ø

fõℎ for all õℎ ∈ Vℎ,

∫
Ø

á∇pℎ ⋅ ∇õℎ + ∫
Ãi ãℎpℎõℎ = ∫

Ãc (uℎ − gä)õℎ for all õℎ ∈ Vℎ,

â ∫
Ãi ∇ãℎ ⋅ ∇õℎ + ∫

Ãi (uℎ − ua)pℎõℎ + ∫
Ãi

që(ãℎ − ã†)õℎ
((ãℎ − ã†)2 + å2)1−

q2 = 0 for all õℎ ∈ Vℎ,Ãi .
(4.1)
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Proof. Analogue to the continuous case in [14, Theorem 3.5], we can show 1
2 ‖uℎ(ãℎ) − gä‖2L2(Ãc) is Fréchet di�er-

entiable and its derivative is given by (ua − uℎ)pℎ|Ãi , where uℎ and pℎ satis�es the �rst two equations in (4.1).
By direct computation, one can show that the derivative with respect to ãℎ implies the last equation.

Remark 4.2. If the box constraint is active, we can introduce a Lagrange multiplier corresponding to it,
see [16] for details. In this work we neglect the constraint since it is not our major concern. Moreover we can
always project the numerical solution back ontoAℎ after each iteration.

The straightforward application of the Newton algorithm to solve the nonlinear KKT system (4.1) may cause
numerical instability. Indeed, the derivative of the third equation in (4.1) has one term:

q(q − 1)((ãℎ − ã†)2 + å2)
q2 −1 + q(2 − q)å2((ãℎ − ã†)2 + å2)

q2 −2.
If (ãℎ − ã†) is away from 0 and å = o(1), this term is negative (due to q(q − 1) < 0), which shifts the spectral
of −âΔ to left andmay cause trouble during Newton iteration. In order to overcome this trouble, we proposed
a modi�ed Newton method. To be precise, we replace

1
((ãℎ − ã†)2 + å2)1−

q2
in the third equation of KKT system (4.1) by

1
((ãkℎ − ã†)2 + å2)1−

q2 ,
where ãkℎ is from the previous iteration. This approach can be viewed as the combination of the Newton
method with the iteratively reweighted least square method. The details of algorithm can be found in
Algorithm 1. The stop condition in line 6 can be chosen as the relative error

max{
‖ãk+1ℎ − ãkℎ‖L2(Ãi)

‖ãk+1ℎ ‖L2(Ãi) ,
‖uk+1ℎ − ukℎ‖L2(Ø)

‖uk+1ℎ ‖L2(Ø)
,
‖pk+1

ℎ − pk
ℎ‖L2(Ø)

‖pk+1
ℎ ‖L2(Ø)

}

is less than a given tolerance ó or the max iteration number exceeds a given value, i.e., k + 1 ≥ Kmax.

Algorithm 1.Modi�ed Newton algorithm.

1: Given initial guess ã0ℎ , u
0
ℎ, p

0
ℎ.

2: for k = 0, 1, 2, . . . do
3: Let øk

ℎ := [(ãkℎ − ã†)2 + å2]
q2 −1.

4: Obtain ãk+1ℎ , uk+1ℎ , pk+1
ℎ by solving

{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{
{

∫
Ø

á∇uk+1ℎ ⋅ ∇õℎ + ∫
Ãi ã

k
ℎu

k+1
ℎ õℎ + ∫

Ãi ã
k+1
ℎ ukℎõℎ − ∫

Ãi ã
k
ℎu

k
ℎõℎ = ∫

Ãi ã
k+1
ℎ uaõℎ + ∫

Ãc võℎ + ∫
Ø

fõℎ for all õℎ ∈ Vℎ,

∫
Ø

á∇pk+1
ℎ ⋅ ∇õℎ + ∫

Ãi ã
k
ℎp

k+1
ℎ õℎ + ∫

Ãi ã
k+1
ℎ pk

ℎõℎ − ∫
Ãi ã

k
ℎp

k
ℎõℎ = ∫

Ãc (u
k+1
ℎ − gä)õℎ for all õℎ ∈ Vℎ,

â ∫
Ãi ∇ã

k+1
ℎ ⋅ ∇õℎ + ∫

Ãi (u
k+1
ℎ − ua)p

k
ℎõℎ + ∫

Ãi (u
k
ℎ − ua)p

k+1
ℎ õℎ

− ∫
Ãi (u

k
ℎ − ua)p

k
ℎõℎ + ∫

Ãi që(ã
k+1
ℎ − ã†)øk

ℎõℎ = 0 for all õℎ ∈ Vℎ,Ãi .

5: Projection ãk+1ℎ ontoAℎ.
6: Check stop condition.
7: end for
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5 Numerical example
In this section, we use both two-dimensional and three-dimensional numerical experiments to validate the
model and algorithm. There are two regularization parameters and a smoothing parameter in the model.
Since the numerical result is not sensitive to â and å if they are small enough, in all the tests we set

â = 10−15 and å = 10−6.

The regularization parameter ë is very important to obtain a satisfactory reconstruction. We choose ë by the
discrepancy principle combined with the path-following strategy. To be precise, let ñ ∈ (0, 1) and we apply
Algorithm 1 with ën = ë0ñ

n and the initial guess to be the solution of the ën−1-problem.
In our simulation the noisy data gä are generated by

gä(s) = ĝ(s)(1 + ä(−1 + 2î)) on Ãc,

where ĝ(s) refers to the exact data, ä represents the noise level and î is uniformly randomdistributed on [0, 1].
All the computations are performed by using FreeFem++ [8] on a laptop.

Example 5.1. Let Ø = (0, 1) × (0, 1), Ãi = (0, 1) × {1}, á = 0.5, f = −2, v = 1 on {1} × [0, 1] and vanishing on the
other boundaries, ua = 2.5 and ã† = 1. The Robin coe�cient to be recovered ã̂ is given by

ã̂ = ã† + (sin(
ð

0.04
(s − 0.48)) + 1)ö[0.46,0.54].

We consider here a noise free case.
Observe that the support of ã̂ − ã† has a very small size 0.08which leads to an extremely ill-posed system.

In Figure 1 (a), one can �nd the reconstruction by L2, L1 and L0.5 by setting ë = 1e−7. The L1- and L2-model
are solved using the algorithm in [16] and [14], respectively. Clearly only L0.5-regularization has a satisfactory
result. To get a good reconstruction by L1-regularization one needs to choose ë ≤ 1e−13, and L2-regularization
never has a sparse reconstruction.

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

2.5

3

3.5

x

γ(
s)

 

 
Exact
L0.5
L1
L2

(a) Example 5.1.

0 0.2 0.4 0.6 0.8 1
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

x

γ(
s)

 

 
Exact
L0.5
L1

(b) Example 5.2.

Figure 1. The exact and numerical Robin coe�cients for (a) Example 5.1 with L0.5, L1, L2-regularization term and (b) for
Example 5.2 with 10% noise (right panel).
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Example 5.2. The problem setting is same as in Example 5.1 except for

ã̂ = ã† + (sin(
ð
0.1

(s − 0.4)) + 1)ö[0.4,0.6].

Let the noise level ä = 10%.
In this example the support is a bit larger (with size 0.2) but the noise is also large. Figure 1 (b) shows

the reconstruction by L1- and L0.5-regularization. In the large noise case, L0.5-regularization is much better
than L1-regularization.

Example 5.3. The problem setting is same as in Example 5.2. This example involves two parts. In the �rst
part we use q = 0.5 but consider the di�erent noise level ä = 1%, 3%, 10%, 15%. In the second part we �x noise
level ä = 3% and choose di�erent q = 0.9, 0.7, 0.5, 0.3, 0.1. The numerical results are presented in Figure 2.
We can �nd that to reconstruct a very sparse solution, smaller q is better.
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Figure 2. The exact and numerical Robin coe�cients for Example 5.3 with (a) di�erent noise level and (b) di�erent q.

Example 5.4. Let Ø = (0, 1)3, Ãi = (0, 1) × (0, 1) × {1}, á = 1, f = 6,

v =
{
{
{

−2 on x = 0 or y = 0 or z = 0,
2 on x = 1 or y = 1,

ua = 1, ã† = 2, ä = 10−3 and

ã̂ = ã† + sin(3ð(x −
2
3
)) sin(3ð(y −

2
3
))ö(x)[ 13 , 23 ]ö(y)[ 13 , 23 ].

Figure 3 shows the exact and reconstructionRobin coe�cient. It canbe found the reconstruction is reasonable
under L0.5-regularization.

Example 5.5. Let Ø = (0, 1) × (0, 1), Ãi = (0, 1) × {1}, á = 1, f = −4, v = 2 on {1} × [0, 1] and vanishing on the
other boundaries, ua = x2 + y2 + 1 and ã† = 1. Let the noise level ä = 0.5%. The Robin coe�cient to be
recovered ã̂ is given by

ã̂ = ã† + sin(2ð(x −
1
4
)) + 1.

In this example, the desired solution ã̂ is not sparse. The sparse promoted Lq-regularization may not
get a satisfactory reconstruction, since we choose the regularization parameter â very small in praxis.
Figure 4 (a) shows that the L0.5- and L0.8-regularization do not provide a good result, to compare with
L1- and L2-regularization in Figure 4 (b).
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(a) (b)

(c)

Figure 3. (a) The exact Robin coe�cients for Example 5.4, (b) the numerical results with L0.5-regularization term with 0.1% noise
and (c) the error plot.
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Figure 4. (a) The exact and numerical Robin coe�cients for Example 5.5 with ä = 1%. L0.5- and L0.8-regularization
and (b) L1- and L2-regularization.
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6 Conclusion
In this paper, we considered the inverse Robin problem for an elliptic equation by adopting Lq-regularized
(q ∈ (0, 1)) output least square formulation. We proved the existence of the minimizer and the convergence of
the �nite element discretization. Amodi�edNewtonmethodwas adopted to solve the KKT system. Numerical
simulations for the two-dimensional and three-dimensional examples validated the proposed model and
algorithm.
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