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Innate immune response plays an important role in control and clearance of pathogens following viral infection. However, in the
majority of virus-infected individuals, the response is insufficient because viruses are known to use different evasion strategies to
escape immune response. In this study, we use optimal control theory to investigate how to control the innate immune response.
We present an optimal control model based on an ordinary-differential-equation system from a previous study, which investigated
the dynamics and regulation of virus-triggered innate immune signaling pathways, and we prove the existence of a solution to the
optimal control problem involving antiviral treatment or/and interferon therapy.We conduct numerical experiments to investigate
the treatment effects of different control strategies through varying the cost function and control efficiency. The results show that
a separate treatment, that is, only inhibiting viral replication (𝑢

1
(𝑡)) or enhancing interferon activity (𝑢

2
(𝑡)), has more advantages

for controlling viral infection than a mixed treatment, that is, controlling both (𝑢
1
(𝑡)) and (𝑢

2
(𝑡)) simultaneously, including the

smallest cost and operability. These findings would provide new insight for developing effective strategies for treatment of viral
infectious diseases.

1. Introduction

The innate immunity plays a critical role in the control of viral
infection because it is known that most infectious pathogens
are eliminated through the innate immune response without
necessarily requiring the activation of adaptive immunity
[1–3]. However, virus-mediated innate immune response
is a complex dynamical process because multiple signal-
ing pathways are activated in response to virus infection.
Interferons (IFNs) are cytokines that are crucial for limiting
viral replication at the site of infection and for coordinating
adaptive response that leads to the development of antigen-
specific acquired immunity. One of themechanisms bywhich
the innate immune system senses the invasion of pathogenic
microorganisms is through the Toll-like receptors (TLRs)
[4]. TLR signaling pathways induce the expression of type
I IFN in a myeloid differentiation factor 88- (MyD88-)
dependent manner, thus promoting the production of many
antiviral proteins (such as Mx, ISG20, OAS, and PKR)
and immunoactive cytokines. These antiviral components

inhibit viral replication and cause apoptosis of infected cells,
subsequently resulting in the clearance of the infectious
pathogens.

To better understand the dynamics of the innate immune
response and the regulation of the signaling components,
mathematical modeling and theoretical analyses are increas-
ingly being used to investigate the mechanism of virus-
induced signaling pathways [5–8]. To the best of our knowl-
edge, the study about the control of the complex process
of virus-mediated innate immune response has not been
reported in the literature. Although there have been a few
reports of optimal theory to the treatment of the spread
of infectious diseases from macroscopic levels [9–13], such
as in cell levels [14, 15] or population levels [11], none
of these studies has included IFNs and antiviral proteins
(AVPs) in virus-mediated signaling pathways as the specific
components.

In a previous study [16], we developed a simplified
model of virus-activated signaling pathways to investigate
the dynamics and regulation of the innate immune response.
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Figure 1: A schematic diagram of interaction among viral mRNAs,
IFNs, and AVPs adapted from [16]. A line with an arrow represents
positive regulation and a line with a short bar indicates negative
regulation.

In our model, the interactions among the following compo-
nents are considered, that is, viral mRNAs produced from
viral infection, type I IFNs, and AVPs (Figure 1). In the
present study, we establish an optimal control model of
virus-triggered signaling network and investigate the optimal
control strategies for the innate immune response.

This paper is organized as follows. Section 2 proposes
an optimal control model based on an ordinary-differential-
equation system from our previous work which was validated
by biological experiments [16]. Moreover, the existence of
an optimal solution is proven. The results of simulations
under different cases and sensitivity analysis are presented in
Section 3. Finally, Section 4 summarizes with conclusions.

2. Models and Methods

2.1. Optimal Control Model. From Figure 1, viruses induce
the expression of IFNs, IFNs activate the expression of AVPs,
and AVPs inhibit the replication of viral mRNAs, forming
a negative feedback loop. Viruses have an autofeedback
(or self-replication), and there exists a positive feedback
by multistep reactions from IFNs to IFNs. Based on the
law of mass action, the production rates (𝑘

1
, 𝑘
2
, and 𝑘

3
),

and degradation rates (𝑑
1
, 𝑑
2
, and 𝑑

3
) of viral mRNAs,

IFNs and AVPs are assumed to be linearly proportional
to their concentrations, respectively. The processes of AVPs
inhibiting viral mRNAs and the positive feedback of IFNs
are represented using Hill functions. Then, we can establish
a nonlinear ordinary-differential-equation system (1) with
three states (viral mRNAs, IFNs, and AVPs), revised from the
virus-triggered innate immune regulatory network studied in
[16] by neglecting the time delays in order to simplify the
following discussion:

𝑑𝑋 (𝑡)
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1
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1
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3
𝑍 (𝑡) ,

(1)

where 𝑋(𝑡), 𝑌(𝑡), and 𝑍(𝑡) are the concentrations of three
components, viral mRNAs, IFNs, and AVPs, respectively. 𝐾

1

and 𝐾
2
are the inhibition and activation coefficients of AVPs

and IFNs, respectively; 𝑏
1
and 𝑏
2
are the maximal production

rates; and 𝑛
1
and 𝑛

2
are the Hill coefficients in two Hill

functions, respectively.
To make the theoretical analysis convenient, we nondi-

mensionalize system (1). Time is scaled relative to the degra-
dation rate (𝑑

3
) of AVPs.Wemake the following substitutions

and assume that all of the model parameters are greater
than 0 for studying the actual biological significance: 𝑥(𝑡) =
(𝑘
2
𝑘
3
/𝐾
1
𝑑
2

3
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3
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1
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3
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2
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1
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3
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3
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.

Using 𝑡 instead of 𝑡 for notational convenience, we obtain
the nondimensional system of equations:

𝑑𝑥

𝑑𝑡

=

𝜎
1
𝛼
2
𝑥 (𝑡)

1 + 𝑧
𝑛
1 (𝑡)

− 𝛼
2
𝑥 (𝑡) ,

𝑑𝑦

𝑑𝑡

= 𝑥 (𝑡) +

𝜎
2
𝛼
4
𝑦
𝑛
2
(𝑡)

𝐾
𝑛
2 + 𝑦
𝑛
2 (𝑡)

− 𝛼
4
𝑦 (𝑡) ,

𝑑𝑧

𝑑𝑡

= 𝑦 (𝑡) − 𝑧 (𝑡) ,

(2)

where 𝑥(𝑡), 𝑦(𝑡), and 𝑧(𝑡) are the dimensionless concentra-
tions of viral mRNAs, IFNs, and AVPs, respectively. 𝛼

2
and

𝛼
4
are called the relative degradation rates of the viruses

and IFNs with respect to the degradation rate (𝑑
3
) of AVPs,

respectively. 𝐾 is the relative activation coefficient of IFNs
with respect to AVPs. 𝜎

1
can be viewed as the relative ratio

between viral replication and degradation, which represents
the self-replicating ability of viruses. Similarly, 𝜎

2
, the ratio

between IFN activation and degradation, can be viewed as the
relative strength of IFN production. For brevity and clarity in
the study, we let 𝑛

1
= 𝑛
2
= 2, which leads to system (3) which

presents a complex dynamic behavior and is more consistent
with the biological experiments [16].

Now, optimal control theory is used to investigate inter-
vention strategy for abnormal innate immune response. Bio-
logical evidences have shown that one class of antiviral drugs
plays roles through inhibiting and controlling viral replica-
tion [17] and another class of drugs are interferons, which
stimulate the immune system to attack a range of pathogens
[18]. Therefore, through taking into account retarding viral
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replication or (and) enhancing interferon activity, we propose
the following control system:

𝑑𝑥

𝑑𝑡

=
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𝑢
1
(𝑡)] 𝜎
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2
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1 + 𝑧
2
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2
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𝜎
2
𝛼
4
𝑦
2
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𝐾
2
+ 𝑦
2
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− [1 − 𝜀
2
𝑢
2
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4
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𝑑𝑧
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= 𝑦 (𝑡) − 𝑧 (𝑡) ,

(3)

where control function 𝑢
1
(𝑡) represents external forces (e.g.,

inhibiting viral replication by drug treatment) to reduce viral
replication ratio 𝜎

1
, which is weakened to [1 − 𝜀

1
𝑢
1
(𝑡)]𝜎
1
.

Control function 𝑢
2
(𝑡) is desirable to lower the degradation

rate of IFNs (e.g., improving interferon activity by interferon
therapy), which will in turn enhance the relative strength of
self-replication of IFNs 𝜎

2
, making it to be (1/(1−𝜀

2
𝑢
2
(𝑡)))𝜎

2
,

where𝑢
𝑖
(t) (𝑖 = 1, 2) satisfies 0 ≤ 𝑢

𝑖
(𝑡) ≤ 1.𝑢

𝑖
(𝑡) = 0 indicates

that we do not take any controlmeasures and the host restores
health from infection status by his own immunomodulation.
When 𝑢

𝑖
(𝑡) = 1, we need to do our best to interfere with

viral infections [13]. Factor 𝜀
𝑖
(𝑖 = 1, 2) denotes the control

implementation efficiency, meeting 0 < 𝜀
𝑖
< 1. For the

convenience of discussion, we assume that 𝜀
1
= 𝜀
2
[11].

2.2. Performance Function and Control Strategies. Obviously,
system (3) presents a complex coupling system, so per-
formance function (objective function) 𝐽 is determined by
minimizing the treatment cost and the number of virus
particles in a finite time interval [0, 𝑡

𝑓
] based on optimal

control theory

𝐽 (𝑢
1
(𝑡) , 𝑢
2
(𝑡)) = ∫

𝑡
𝑓

0

(𝐶𝑥 +

𝑊
1

2

𝑢
2

1
(𝑡) +

𝑊
2

2

𝑢
2

2
(𝑡)) 𝑑𝑡.

(4)

As it is customary, we choose to model the control efforts
with a combination of quadratic terms, 𝑢2

𝑖
(𝑡) (𝑖 = 1, 2). The

constants 𝐶 and 𝑊
𝑖
(𝑖 = 1, 2) are weights of virus state and

control function 𝑢
𝑖
(𝑡) (𝑖 = 1, 2) over [0, 𝑡

𝑓
], respectively. In

order to simplify the following study, we suppose that control
𝑢
1
(𝑡) has the same importance as 𝑢

2
(𝑡); that is, 𝑊

1
= 𝑊
2
.

The optimal control problem is to find optimal functions
(𝑢
∗

1
(𝑡), 𝑢
∗

2
(𝑡)) such that

𝐽 (𝑢
∗

1
(𝑡) , 𝑢
∗

2
(𝑡)) = min

Ω

𝐽 (𝑢
1
(𝑡) , 𝑢
2
(𝑡)) , (5)

where Ω = {𝑢
1
(𝑡), 𝑢
2
(𝑡) ∈ (𝐿

2
(0, 𝑡
𝑓
))
2
| 0 ≤ 𝑢

1
(𝑡), 𝑢
2
(𝑡) ≤

1, 𝑡 ∈ [0, 𝑡
𝑓
]} subject to the state equations (2) and appro-

priate initial conditions.
Three different control strategies are investigated. This

approach can be used to test various options. Here, we only
look at how the state variables change under the following
three alternatives.

(i) Strategy 1: inhibit viral replication by reducing (block-
ing) virus production (control 𝑢

1
(𝑡) alone).

(ii) Strategy 2: enhance the activity of IFN to inhibit
virus by reducing the relative degradation rate of IFN
(control 𝑢

2
(𝑡) alone).

(iii) Strategy 3: two treatment controls on clinically infec-
tious cases (controls 𝑢

1
(𝑡) and 𝑢

2
(𝑡)).

2.3. Theoretical Analysis. First, system (3) is transformed
into the problem of minimizing the following Hamiltonian
function of optimal control problem:
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2
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2
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𝑊
2

2
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1
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2
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2
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2
(𝑡)

− (1 − 𝜀
2
𝑢
2
) 𝛼
4
𝑦 (𝑡)]

+ 𝜆
3
(𝑡) [𝑦 (𝑡) − 𝑧 (𝑡)] .

(6)

From Pontryagin’s Maximum Principle [19], we obtain the
following theorem for assuring the existence of a solution to
our optimal control problem.

Theorem 1. If the continuous functions 𝜆
𝑖
(𝑡), (𝑖 = 1, 2, 3)

satisfy adjoint equations

𝑑𝜆
1

𝑑𝑡

= − 𝐶 − 𝜆
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2
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2
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2
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𝑢
2
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4
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2

+ 𝜆
3
(𝑡)

(7)

and transversality conditions (terminal conditions)

𝜆
𝑖
(𝑡
𝑓
) = 0, 𝑖 = 1, 2, 3. (8)

Then, there exist optimal controls (𝑢
∗

1
(𝑡), 𝑢
∗

2
(𝑡)) and corre-

sponding solutions (𝑥∗(𝑡), 𝑦∗(𝑡), 𝑧∗(𝑡)) that minimize 𝐽(𝑢
1
(𝑡),

𝑢
2
(𝑡)) over Ω. Moreover,

𝑢
∗

1
(𝑡) = min{max{0, 𝜀1𝜎1𝛼2𝜆1𝑥

𝑊
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2
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𝜀
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𝛼
4
𝜆
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𝑦

𝑊
2

} , 1} .

(9)

Proof. From Corollary 4.1 of [20] and Theorem 1 of [11],
there are optimal controls because the integrand of 𝐽 is a
convex function of (𝑢

1
(𝑡), 𝑢
2
(𝑡)). Also, system (3), also called

state equations, satisfies the Lipshitz property with respect to
the state variables because state solutions are 𝐿∞ bounded.
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The following results can be derived from Pontryagin’s Max-
imum Principle [19]:

𝑑𝜆
1
(𝑡)

𝑑𝑡
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.

(10)

So we obtain system (7), and at the optimal controls and
corresponding states, we have

𝜆
𝑖
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𝑓
) = 0, 𝑖 = 1, 2, 3. (11)

The differentiations of𝐻 with respect to 𝑢
1
and 𝑢

2
at optimal
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Then, we obtain 𝑢
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2
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𝛼
4
𝜆
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2
. By taking into account the control bounds, the

properties (9) hold up.

2.4. Numerical Simulations. Based on optimal control theory,
the solution of the optimal control problem (5) can be
transformed into solving the following two-point boundary
value problem:

𝑑𝑥

𝑑𝑡

=

[1 − 𝜀
1
𝑢
1
(𝑡)] 𝜎
1
𝛼
2
𝑥 (𝑡)

1 + 𝑧
2
(𝑡)

− 𝛼
2
𝑥 (𝑡) ,

𝑑𝑦

𝑑𝑡

= 𝑥 (𝑡) +

𝜎
2
𝛼
4
𝑦
2
(𝑡)

𝐾
2
+ 𝑦
2
(𝑡)

− [1 − 𝜀
2
𝑢
2
(𝑡)] 𝛼
4
𝑦 (𝑡) ,

𝑑𝑧

𝑑𝑡

= 𝑦 (𝑡) − 𝑧 (𝑡) ,

𝑑𝜆
1

𝑑𝑡

= −𝐶 − 𝜆
1
(𝑡) {

[1 − 𝜀
1
𝑢
1
(𝑡)] 𝜎
1
𝛼
2

1 + 𝑧
2
(𝑡)

− 𝛼
2
}

− 𝜆
2
(𝑡) ,

𝑑𝜆
2

𝑑𝑡

= −𝜆
2
(𝑡) {

2𝜎
2
𝛼
4
𝐾
2
𝑦 (𝑡)

[𝐾
2
+ 𝑦
2
(𝑡)]
2
− [1 − 𝜀

2
𝑢
2
(𝑡)] 𝛼
4
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Then, we carry out numerical simulations for system (13)
under three different strategies described in Section 2.2. We
solve by iterating the nonlinear optimal control system con-
sisting of state equation (3), that is, the first three equations
of system (13), and adjoint equation (7), from the fourth to
sixth equation of system (13). State equation (3) is numerically
computed forward in a given initial conditions, and the
corresponding adjoint equation (7) is solved backward in
given transversality condition (8). Iterating process is not
terminated until it meets the convergence criteria specified in
advance (10−5). Here, we can iteratively solve these problems
by the steepest descent method [21, 22].

Step 1. Initialize 𝑡
𝑓
,𝑁, 𝑠(0), 𝜆(𝑡

𝑓
), and 𝑖 = 0, subdivide [0, 𝑡

𝑓
]

into𝑁 equal subintervals, and set tolerance 𝛾, step size 𝜏, and
𝑢
(0)
(𝑡) = 𝑢

(0)
(𝑡
𝑘
) = 1, 𝑡 ∈ [𝑡

𝑘
, 𝑡
𝑘+1

], 𝑘 = 0, 1, . . . , 𝑁 − 1.

Step 2. For 𝑖, integrate state equations (3) from 0 to 𝑡
𝑓

with 𝑠(0) and 𝑢
(𝑖)
(𝑡) and save the state trajectory 𝑠(𝑖)(𝑡) and

integrate adjoint equations (7) backward, that is, from 𝑡
𝑓
to 0,

with 𝜆(𝑡
𝑓
).

Step 3. Calculate
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𝑑𝑡. (14)

If ‖𝜕𝐻(𝑖)/𝜕𝑢‖ ≤ 𝛾, then stop the iterative procedure, and
output the extremal state and control. Otherwise, renew the
control function by 𝑢

(𝑖+1)
(𝑡
𝑘
) = 𝑢

(𝑖)
(𝑡
𝑘
) − 𝜏(𝜕𝐻

(𝑖)
/𝜕𝑢)(𝑡

𝑘
),

𝑘 = 0, 1, . . . , 𝑁 − 1. Replace 𝑢(𝑖) by 𝑢(𝑖+1) and go to Step 2.

The initial values of state variables and the model param-
eter values are shown in Table 1.

3. Results and Discussions

3.1. Baseline Cases. From stability conditions in [16, 23], if
no treatment measures are taken, namely, 𝜀

1
= 𝜀
2

= 0,
system (3), degenerated into system (2), will produce periodic
oscillations under the other model parameters taken from
Table 1, which exhibit disease state (solid black lines shown in
Figures 2–8—(a), (b), and (c)). A “good” control or treatment
is not only to eliminate the virus, but also to make the cost as
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Table 1: The initial values of state variables and the model parameter values.

Parameter Description Value
𝜎
1

Relative ratio between viral replication and degradation 4

𝜎
2

Relative strength of IFNs production 2

𝛼
2

Relative degradation rates of the viruses 6

𝛼
4

Relative degradation rates of the IFNs 4

𝐾 Relative activation coefficient of IFNs 2

𝑛
1

Hill coefficient 2

𝑛
2

Hill coefficient 2

𝜀
1

Efficiency factor of control 𝑢
1

0.8

𝜀
2

Efficiency factor of control 𝑢
2

0.8

𝐶 Weight of virus state 1

𝑊
1

Weight of control 𝑢
1

1

𝑊
2

Weight of control 𝑢
2

1

(𝑥(0), 𝑦(0), 𝑧(0)) Initial values of state variables (10, 5, 2)

low as possible. All numerical simulations are implemented
using MATLAB 2009b (The MathWorks, Natick, MA).

We now examine the optimal controls under three differ-
ent control strategies using the model parameters taken from
Table 1 unless otherwise stated. The weight coefficients take
𝐶 = 1, and 𝑊

1
= 𝑊
2
= 1. The treatment efficiency factors

𝜀
1
= 𝜀
2
= 0.8. The length of treatment time is assumed to

be 10 time units. Obviously, if no appropriate measures are
taken in this course, the viruses will appear in the explosive
oscillations and the host will be seriously intrusive or suffer
from a disease unavoidably. Under the model parameters
from Table 1, Figure 2 shows the three effects of different
kinds of controls.

From Figure 2, all three control strategies are able to
play virucidal effects (the concentration of viral mRNAs is
reduced to 0 quickly), but they also exhibit some differences.
For performance function, the optimal cost under Strategy
1 is lower than that produced by Strategy 2 or Strategy 3
(Figure 2(e)), which indicates that optimal control 𝑢∗

1
under

Strategy 1 is more effective than optimal control 𝑢∗
2
under

Strategy 2 or optimal controls 𝑢∗
1
and 𝑢

∗

2
under Strategy 3

in the entire control process. Through careful analysis, it
is not difficult to find that optimal cost is not only related
with the control function itself, but also related with the
control process (or control effect, e.g., whether 𝑥 rapidly
approaches zero?). Also, from simulation results, although
the two control functions 𝑢∗

1
and 𝑢

∗

2
under Strategy 3 are all

relatively small (Figure 2(d)), the optimal cost by Strategy 3
is larger than that by Strategy 1 or Strategy 2 (Figure 2(e)).
This result indicates that the joint effect of two different
controls (Strategy 3) does not necessarily take amore superior
to a certain kind of treatment alone. This is an interesting
phenomenon, meaning that sometimes the combined effect
of multitreatments simultaneously is not necessarily a good
idea. Meanwhile, under Strategy 1, interferon and antiviral
protein can be rapidly returned to normal levels (𝑦 = 𝑧 =

0, Figures 2(b) and 2(c)). Therefore, based on the model
parameters from Table 1, the control under Strategy 1 is
the best choice; that is, the treatment by suppressing viral
replication (such as viral suppression by injecting or taking

drugs in patients) will receive good therapeutic effect and cost
savings.

In addition, it can be seen from Figure 2(e), with the
increase of iterations in the algorithm, that the costs will be
gradually reduced and be finally stabilized.

3.2. The Control Effects When the Cost Function Is Changed.
In the actual treatment process restricted by medical con-
ditions, however, the weighting coefficients of performance
function will be different. We further examine what different
results will showunder three different control strategies when
weighting coefficients vary.

First, assuming that the weight of viral state is unchanged
(𝐶 = 1), we investigate the effects of control weights𝑊

1
and

𝑊
2
on the optimal control.
When the control weighting coefficients become smaller

(𝑊
1
= 𝑊
2
= 0.1), which indicate that there are less con-

trols, all control manners can also effectively clear the virus
(Figure 3(a)), which is the same as in the base case. However,
since the control weighting coefficients become smaller, the
optimal controls of the three strategies are stronger compared
to the base case, and 𝑢

∗

1
is almost 1 under Strategy 1

from Figure 3(d), but the costs have significantly decreased
(Figures 3(e) and 2(e)). On the contrary, the cost resulting
from optimal control under Strategy 3 is less than that by
Strategy 2, indicating that the common effect of combined
with 𝑢∗

1
and 𝑢∗

2
is better than the use of 𝑢∗

2
alone. This shows

that the reduction in the control weight coefficients, namely,
medical conditions likely to be met, taking various measures
will be more effective. However, on the overall situation,
the optimal control from Strategy 1 is more effective than
that from Strategy 2 or Strategy 3 because the cost from
Strategy 1 is lowest among three strategies (Figure 3(e)) and
the treatment from Strategy 1 is more efficient (𝑢∗

1
≈ 1,

Figure 3(d)) than that from Strategy 2 or Strategy 3.
When the control weighting coefficients become larger

(𝑊
1
= 𝑊
2
= 10), compared with the base case, control effects

are different under the three different control strategies.
Strategy 1 and Strategy 2 are able to clear the virus com-
pletely, but Strategy 3 cannot (Figure 4(a)). Under Strategy
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Figure 2: Optimal controls under three different strategies. Black solid lines, in (a), (b), and (c), represent the dimensionless concentration of
viral mRNAs (𝑥), IFNs (𝑦), andAVPs (𝑧) without treatment, respectively. Dashed blue line, green dotted line, and red dotted line represent the
control effect about 𝑥, 𝑦, and 𝑧 under Strategy 1 (only control 𝑢∗

1
), Strategy 2 (only control 𝑢∗

2
), and Strategy 3 (control 𝑢∗

1
and 𝑢∗

2
), respectively.

(d) shows the control functions under the different control methods, in which the red triangle dotted line and squares dotted lines represent
control strength of 𝑢∗

1
and 𝑢

∗

2
when 𝑢

∗

1
and 𝑢

∗

2
are joint action. (e) shows dimensionless costs under the different iterations. All parameters

and initial conditions are taken from Table 1.
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Figure 3: Optimal controls under three different strategies when 𝑊
1
= 𝑊
2
= 0.1. The legends are set to be the same as in Figure 2. Other

parameters and initial conditions are taken from Table 1.
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Figure 4: Optimal controls under three different strategies when𝑊
1
= 𝑊
2
= 10. The legends are the same as in Figure 2. Other parameters

and initial conditions are taken from Table 1.
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Figure 5: Optimal controls under three different strategies when 𝐶 = 0.1. The legends are the same as in Figure 2. Other parameters and
initial conditions are taken from Table 1.
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Figure 6: Optimal controls under three different strategies when 𝐶 = 10. The legends are the same as in Figure 2. Other parameters and
initial conditions are taken from Table 1.
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Figure 7: Optimal controls under three different strategies when 𝜀
1
= 𝜀
2
= 0.5. The legends are the same as in Figure 2. Other parameters

and initial conditions are taken from Table 1.
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Figure 8: Optimal controls under three different strategies when 𝜀
1
= 𝜀
2
= 1. The legends are the same as in Figure 2. Other parameters and

initial conditions are taken from Table 1.
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3, the concentration of the virus shows periodic oscillation;
therefore, the host still suffers from illness. Although there
is a substantial reduction in the optimal cost under Strat-
egy 3, almost to a minimum (comparing with Strategy 2,
Figure 4(e)), it can be seen that the optimal control under
Strategy 3 is hardly workable because of the optimal controls
𝑢
∗

1
and 𝑢

∗

2
oscillation (Figure 4(d)). Comparing Strategy 1

to Strategy 2, it can found that when the control weights
become larger, although the total cost increases in all the
two strategies (almost 3-4 times to the base case), the second
control shows better performance, resulting in the lowest
cost (Figure 4(e)). However, from the operability, the optimal
control under Strategy 1 is easier to be implemented than that
under Strategy 2 or Strategy 3 because the other two controls
are too turbulent (Figure 4(d)), and interferon and antiviral
proteins can be returned to normal (𝑦 = 𝑧 = 0, Figures 4(b)
and 4(c)). Therefore, Strategy 1 is more feasible and effective,
but to be expected, Strategy 2 will become a more realistic
choice when the control weight coefficients are increased.

Secondly, we discuss what the effect on the optimal con-
trol will be, assuming that the control weights are unchanged
(𝑊
1
= 𝑊
2
= 1), when viral status weight becomes smaller

(𝐶 = 0.1) or larger (𝐶 = 10).
When the virus status weighting coefficient becomes

smaller (𝐶 = 0.1), the same as the basic situation,
three control methods are able to effectively clear the
virus (Figure 5(a)) and the total costs will effectively reduce
(Figure 5(e)), saving even more than that due to the control
weight coefficients decreasing. On the one hand, the low
costs result from the weight coefficient reduced. On the other
hand, the optimal control intensity under three strategies
has reduced in different degrees (Figures 2(d) and 5(d)).
It can be found that, moreover, Strategy 2 will lead to the
lowest cost, almost by half of the other two strategies. So, it
can be seen that when the viral weight coefficient decreases
constantly, takingmeasures to enhance the interferon activity
will increasingly become a good choice.

When the viral status weight coefficient becomes larger
(𝐶 = 10), the control effect of three controlmethods is similar
to the base case, but the control intensity is much larger
(Figure 6(d)) and the total costs are much higher (almost
7-8 times than basic case, Figure 6(e)). Also, Strategy 1 has
significant advantages compared to the other two strategies,
being the best choice again.Therefore, it can be expected that
when viral statusweight coefficient becomes larger and larger,
the independent treatment of blocking viral replication will
be more beneficial to treat viral diseases.

In summary, when the weights are changed, Strategy 3
(cotreatment) would not be a good choice and Strategy 1
or Strategy 2 becomes the alternative. Wherein, when the
control weights become smaller or viral weight becomes
larger, the best therapy would be the treatment resulted from
Strategy 1. By contrast, when the control weights become
larger or viral weight becomes smaller, the best therapywould
be resulted from Strategy 2. This shows that, in the treatment
of disease, the separate treatment may sometimes have an
advantage in terms of cost and operability.

3.3.The Control EffectsWhen Treatment Efficiency Factors Are
Changed. Next, we examine how to change about the control
effects under the three different strategies when treatment
efficiency factors are varied.

When the treatment efficiency factors become smaller
(𝜀
1
= 𝜀
2
= 0.5), it can be seen that the optimal control under

Strategy 1 is to be the worst choice, which not only produces
the highest cost andweakens operability because of large fluc-
tuations about 𝑢∗

1
but also cannot eradicate the virus, showing

periodic oscillation. The result causes too serious illness for
the host to recover (Figure 7). Although the optimal cost
under Strategy 3 is smaller than that of Strategy 1, the optimal
control also shows large fluctuation characteristics, meaning
not good maneuverability (Figure 7(d)). Contrary to the two
kinds of optimal control strategies, the optimal control 𝑢∗

2

will generate the lowest cost and good operability during
the entire treatment process (Figure 7(d)). Therefore, when
the treatment efficiency factors become smaller, Strategy 2
by enhancing interferon activity becomes the best treatment
option in turn.

When the treatment efficiency factors become larger (𝜀
1
=

𝜀
2

= 1), compared with the base case, the optimal costs
under three different control modes have different degrees of
reduction and the control intensity has also been weakened.
The optimal control under Strategy 1 again becomes the
best choice (Figure 8(e)), which shows that increasing the
treatment efficiency factors will be beneficial to Strategy 1 to
achieve good results. Moreover, it can be seen that increasing
treatment efficiency factors will reduce the volatility of the
optimal control and will enhance treatment options oper-
ability (Figure 8(d)). Therefore, improving the therapeutic
efficiency factors for the actual treatment of disease will not
only reduce costs, but also increase the choice of treatment.

3.4. Sensitivity Analysis. Amultivariate uncertainty and sen-
sitivity analysis are performed to investigate the effects of
input parameters (𝜎

1
, 𝜎
2
, 𝛼
2
, 𝛼
4
, and 𝐾) on the optimal cost

by Monte Carlo method [24, 25]. The five parameters are
perturbed by 20% at the values from Table 1, assuming that
the input parameters are mutually independent.

We sampled ranges of the parameters 10000 times using
random sampling to yield 10000 scenarios. Then we con-
ducted multivariate uncertainty and sensitivity analysis to
determine the uncertainty in the optimal cost that is due
to the uncertainty in estimating the input parameters. From
Figure 9, we can observe that almost all of Pearson linear
correlation coefficients are small except a few coefficients.The
reason is because, on the one hand, the linear correlation
between the parameters and the optimal cost is weak and
the parameters interfere with each other on the other hand.
Table 2 provides Spearman partial rank correlation coeffi-
cients (SPRCCs) for the optimal cost.

From sensitivity analysis in Table 2, we found that the
SPRCCs are all statistically significant; that is, 𝑃 ≪ 0.05,
for all strategies. The most statistically influential inputs in
Strategy 1 and Strategy 2 are 𝛼

2
and 𝜎

1
(|SPRCC| > 0.5)

while the other three parameters are less influential. In the
three control strategies, the trend of the impact of parameters
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Figure 9: Continued.
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Figure 9: Simulations and Pearson’s linear correlation coefficients.

Table 2: Spearman partial rank correlation coefficents (SPRCCs).

Parameter 𝛼
2

𝛼
4

𝐾 𝜎
1

𝜎
2

Strategy 1
SPRCC −0.6819 −0.0645 0.3559 0.5532 −0.3696
𝑃 value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
Rank 1 5 4 2 3

Strategy 2
SPRCC −0.8100 −0.0639 0.0433 0.5814 −0.2226
𝑃 value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
Rank 1 4 5 2 3

Strategy 3
SPRCC −0.7394 0.0384 0.4054 0.2040 −0.6605
𝑃 value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
Rank 1 5 3 4 2

on the optimal costs is the same; that is, a decrease in 𝛼
2
or

𝜎
2
corresponds to an increase in the optimal costs while an

increase in 𝜎
1
or𝐾 corresponds to an increase in the optimal

costs. SPRCC of parameter 𝛼
4
in the three strategies is very

small, meaning that the impact of 𝛼
4
on optimal cost is small.

4. Conclusions

We studywhich optimal control should be used to achieve the
best antiviral treatment effect under three different strategies
based on optimal control theory and we have the following
conclusions (summary in Table 3).

In the basic case (all parameters taken from Table 1), the
three control strategies can effectively kill the viruses, but
Strategy 1 will be the best treatment option, which not only
leads to the smallest cost but alsomakes the antiviral proteins
and interferons quickly return to normal levels.

When the weights vary, Strategy 1 or Strategy 2 will
become the best optional control. When the control weights
are small or viral status weight becomes large, Strategy 1 will
still be the best treatment option. On the contrary, when the
control weights increase or viral status weight decreases, the
optimal control will be Strategy 2.

When the treatment efficiency factors decrease, the opti-
mal control by enhancing interferon activity is Strategy 2,

Table 3: Optimal strategy when 𝐶,𝑊
𝑖
, or 𝜀
𝑖
(𝑖 = 1, 2) change.

𝐶 𝑊
1
= 𝑊
2

𝜀
1
= 𝜀
2

Optimal strategy
Baseline case 1 1 0.8 Strategy 1

𝑊
𝑖
change 1 0.1 0.8 Strategy 1

1 10 0.8 Strategy 2

𝐶 change 0.1 1 0.8 Strategy 2
10 1 0.8 Strategy 1

𝜀
𝑖
change 1 1 0.5 Strategy 2

1 1 1 Strategy 1

yielding the best treatment options while minimizing cost
and reducing control volatility throughout the treatment
period. When treatment efficiency factors increase, Strategy
1 again becomes the best choice.

In all discussed cases, Strategy 3 is unable to become the
best treatment, indicating that a separate treatment some-
times has more advantages, including the smallest cost and
operability, in the treatment of the disease. Also, improving
efficiency factors for treatment will not only reduce the cost,
but also provide more the treatment choices in the actual
treatment of diseases.

From sensitivity analysis, we found that parameter 𝛼
2
,

the relative degradation rate of virus, is very important for
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the optimal costs in the three strategies. An increase in 𝛼
2
is

help to a decrease in the optimal cost.
More elaborate numerical simulations for unequal weight

coefficients will be conducted in the further work. In addi-
tion, the influences of noises on optimal controls are also
investigated in our next research [26]. The above conclusions
are based on the theoretical analysis and numerical simu-
lation, the reliability needed to pass inspection by clinical
trials, but certainly provide valuable guidance and insight for
developing effective treatment of viral infectious diseases.
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