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a b s t r a c t

This paper presents a modeling study for the intracellular trafficking and trimerization of the HIV-1 Gag

proteins. A set of differential equations including initial and boundary conditions is used to characterize

the transport, diffusion, association and dissociation of Gag monomers and trimers for the time period

from the initial production of Gag protein monomers to the initial appearance of immature HIV-1 virions

near the cell membrane (the time duration Ta). The existence and stability of the steady-state solution of

the initial boundary value problems provide a quantitative characterization of the tendency and equilibrium

of Gag protein movement. The numerical simulation results further demonstrate Gag trimerization near the

cell membrane. Our calculations of Ta are in good agreement with published experimental data. Sensitivity

analysis of Ta to the model parameters indicates that the timing of the initial appearance of HIV-1 virions

on the cell membrane is affected by the diffusion and transport processes. These results provide important

information and insight into the Gag protein transport and binding and HIV-1 virion formation.

© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

Human immunodeficiency virus type 1 (HIV-1) is a retrovirus that

causes acquired immunodeficiency syndrome (AIDS), a condition in

humans in which the immune system progressively fails. The group

specific antigen (Gag) protein plays an important role in the viral life

cycle of HIV [1]. The Gag protein is the sole determinant of particle

budding, and expression of the Gag protein alone in many eukaryotic

cells generates HIV virus-like particles (VLPs) [2]. Therefore, quan-

titative results for the intracellular trafficking and assembly of Gag

proteins are critically important for gaining system-level insights into

the process of virus replication and ultimately for developing novel

control strategies [3].

In recent years, there have been efforts to develop quantitative

models for intracellular transport processes in HIV or other viral infec-

tions [4,5]. In [6], intracellular transport is modeled based on molecu-

lar motors that pull cargo along a cytoskeletal structure. These molec-

ular cargoes move bidirectionally, involving both the plus and minus

directed motors. Studies in [7] concluded that mechanical stochastic

tug-of-war models cannot explain this type of bidirectional lipid-

droplet transport.
∗ Corresponding author. Tel.: +86 2768752958.
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In [8] and [9], interesting results were obtained when the move-

ent of a single virus in cells was simulated using a stochastic model.

ther work on quantitative models for intercellular transport were

roposed in [10,11]. However, those models mostly focus on the traf-

cking of a single virus. In [12], all of the species of Gag proteins,

ncluding monomers, dimers, and trimers, were treated as quasi-

onomers with equivalent concentrations. However, existing bio-

ogical studies (e.g., [13,15]) revealed that Gag trimers play an impor-

ant role in binding with the plasma membrane of the infected host

ell. Therefore, it is important to develop an integrated mathematical

odel for the simultaneous treatment of Gag monomers and trimers

n the dynamic process of transport and binding.

This paper presents a mathematical model for the characteri-

ation of the dynamics of virus trafficking and the transformation

etween the monomeric and trimeric states by coupling a partial

ifferential equation and an ordinary differential equation (ODE).

ased on this model, we find that Gag protein trimers accumulate

t the cell membrane. We also estimate when the first new virions

ould appear near the cell membrane, and our numerical results

ere in quantitatively good agreement with published experimental

esults [16].

The rest of this paper is organized as follows. In Section 2, we

escribe a general model and perform nondimensionalization. In

ection 3, we analyze the stability of the steady-state for a special

ase when there is no diffusion or transport. Section 4 presents the

http://dx.doi.org/10.1016/j.mbs.2015.01.008
http://www.ScienceDirect.com
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http://crossmark.crossref.org/dialog/?doi=10.1016/j.mbs.2015.01.008&domain=pdf
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Fig. 1. An illustration of virus assembly process.

Source: [17].
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Fig. 2. Transition between monomeric and trimeric states of Gag protein.

Source: [13].
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nalysis of the steady-state for the general model. In Section 5, nu-

erical simulations are performed to calculate the timing of the initial

ppearance of new HIV-1 virions on the plasma membrane. The sen-

itivity analysis of Gag movement to the model parameters is also

resented in Section 5. Section 6 concludes the paper with remarks

n further work in this research area.

. A mathematical model and its nondimensionalization

HIV-1 Gag proteins utilize the host cell cytoskeleton for their in-

racellular movement. HIV-1 particle formation is a multi-step pro-

ess driven by the viral structural protein Gag [17,18]. Gag protein

onomers are produced inside the cytoplasm via the viral mRNA.

hey egress from the cytoplasm to the cell membrane for further

ultimerization and assembly. Subsequently, new immature HIV-1

irions bud from the cell membrane, as shown in Fig. 1. Gag proteins

an utilize microtubules, dynein and kinesin motor proteins, and the

ytoplasm for convection and diffusion. Gag monomers can associate

nto dimers, trimers, and even higher-order multimers. In turn, the

igher-order Gag multimers can dissociate into lower-order multi-

ers as well.

According to [19], Gag proteins often exist in a state of

onomer-dimer or monomer-trimer equilibrium. A monomer-

rimer association equilibrium exists in the presence of IP6. Un-

er this condition, the concentration of dimeric Gag protein is very

ow.

Gag monomers do not penetrate back into the cell nucleus, and

here is no degradation of Gag monomers. Moreover, due to their size

t is reasonable to assume that Gag trimers do not diffuse.

New HIV-1 virions appear and escape their host cells (bud-

ing) when the Gag concentration reaches a threshold value. Ex-

sting data [20] indicate that approximately 5000 copies of the

ag protein are needed for the assembly of progeny virions. It is

eported in [15] that the equilibrium constant Ka is (4.6 ± 1.1)×
09 M−2 at temperature 20 ◦C. This will be used in our numerical
imulations. s
Based on the reported finding in [13] (see Fig. 2), there is a

onomer-trimer equilibrium that is described as follows:

Gagm

k13
GGGGGGGB
F GGGGGGG

k31

Gagt, (1)

here Gagm and Gagt represent the Gag protein monomers and

rimers, respectively, and k13 and k31 represent the two constant

eaction rates for monomers associating into trimers and trimers dis-

ociating into monomers, respectively.
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Fig. 3. Annulus as a geometric model for the cytoplasm.
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In this study, for the simplicity of modeling we assume that the

Gag protein can only exist in the monomeric and trimeric states in

the cytoplasm. We also make the following assumptions:

(1) The cytoplasm is modeled by an annulus (Fig. 3);

(2) Gag monomers are produced inside the cytoplasm at a constant

rate;

(3) Gag proteins convect and diffuse inside the cytoplasm.

Under these assumptions, we develop a mathematical model using

a set of convection-diffusion-reaction equations as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ f1

∂t
= ∇ · (D∇f1 − vf1)+ p1 − 3k13f 3

1 + 3k31f3,

r ∈ (ra, rb), t > 0,

∂ f3

∂t
= k13f 3

1 − k31f3 − γ f3, t > 0,

∇ · (D∇f1 − vf1)|r=ra
= 0, ∇ · (D∇f1 − vf1)|r=rb

= 0,

f1(r, t) = 0, f3(r, t) = 0, r ∈ [ra, rb], t = 0,

(2)

where f1(r, t) and f3(r, t) are the concentrations of the Gag protein

monomers and trimers at position r and time point t, D is the Gag

monomer diffusion rate, v is the velocity of the Gag monomers, ra and

rb are the radii of the nucleus and the plasma membrane, respectively,

p1 is the constant production rate of Gag monomers, and γ is the

degradation rate of Gag protein trimers.

The two boundary conditions imply that Gag monomers do not

penetrate back into the nucleus and will not escape from the cyto-

plasm until the Gag protein concentration near the cell membrane

reaches a threshold value, allowing new virions to form.

Note that although the Gag proteins can move along the micro-

tubules in both directions, we consider only the transport with an

averaged velocity toward the cell membrane. For simplicity, we set

the radial direction vector of the microtubules as
−→
n and the velocity

as v = s
−→
n .

We further introduce dimensionless quantities through scalings

as follows:

τ = t(k31 + γ ), δ1 = D

r2
b
(k31 + γ )

, δ2 = s

rb(k31 + γ )
,

η = ra

rb

, δ3 = k13p2
1

(k31 + γ )3
, δ4 = k31

k31 + γ
, f1 = p1

k31 + γ
φ1, (3)

f3 = p1

k31 + γ
φ3, r = rbρ, δ21 = srb

D
.

Substituting the above new variables in (3) into Eq. (2), we obtain

he following dimensionless model.

∂φ1

∂τ
= δ1

∂2φ1

∂ρ2
+ ∂φ1

∂ρ

(
δ1

ρ
− δ2

)
− δ2

ρ
φ1

+ 1 − 3δ3φ3
1 + 3δ4φ3, ρ ∈ (η, 1), τ > 0

∂φ3

∂τ
= δ3φ3

1 − φ3, τ > 0

(
∂φ1

∂ρ
− δ21φ1

)
= 0, at ρ = η or 1,

φ1(ρ, τ ) = 0, φ3(ρ, τ ) = 0, ρ ∈ [η, 1], τ = 0.

(4)

For this model, we introduce an equilibrium constant Kα = k13
k31+γ

,

o that we can rewrite δ3 as δ3 = Kα
p2

1

(k31+γ )2 . The dimensionless

arameters δ1, δ2, δ3 and δ4 are interpreted as the diffusion ratio,

ransport ratio, association and degradation efficiency of the trimers,

espectively.

. Analysis of the solutions of a simplified model

In this section we simplify the proposed model by considering a

tate with no transport and no diffusion of Gag proteins (δ1 = δ2 = 0).

he purpose of doing so is to examine the consequences of associa-

ion and dissociation among Gag monomers and trimers. In this case,

q. (4) becomes

dφ1

dτ
= 1 − 3δ3φ3

1 + 3δ4φ3,

dφ3

dτ
= δ3φ3

1 − φ3,

φ1(0) = 0, φ3(0) = 0, τ = 0.

(5)

heorem 3.1. The solutions of IVP (5) are positive and bounded. Fur-

hermore, the steady-state solution of (5) is locally asymptotically stable

or δ3 > δ2
4 .

Proof. Let (φ∗
1, φ∗

3) be the solutions of (5).

First, we prove that the solutions (φ∗
1, φ∗

3) are positive. Without a

oss of generality, we set φ∗
1(τ ) = 0, φ∗

3(τ ) > 0 at τ = τ1. From the 1st

DE in (5), we have
∂φ∗

1

∂τ
= 1 + 3δ4φ

∗
3 > 0. This means that φ∗

1(τ1 +
τ) > 0. Thus, the solutions of (5) are always positive.

Next, let B(τ ) = φ∗
1(τ )+ 3φ∗

3(τ ). We easily see that B(τ ) is always

ositive because φ∗
1 and φ∗

3 are positive. Therefore, there exists a

onstant γ0 such that the following holds

0B(τ ) < φ∗
3 <

1

3
B(τ ), 0 < γ0 <

1

3
. (6)

From Eq. (5) and δ4 = k31

k31 + γ
< 1, we have

dB(τ )

dτ
= 1 − 3(1 − δ4)φ

∗
3 < 1 − 3(1 − δ4)γ0B(τ ). (7)

When τ is large enough, B(τ ) <
1

3(1 − δ4)γ0
+ 1 and hence is

ounded, which in turn forces φ∗
1 and φ∗

3 to be bounded.

Next, we analyze the stability of the steady-state solution of (5).

irect calculations lead to an equilibrium point

φT
1 , φT

3

) =
⎛
⎝ 3

√
1

3δ3(1 − δ4)
,

1

3(1 − δ4)

⎞
⎠ . (8)
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ubstituting u = φ1 − φT
1 and v = φ3 − φT

3 into Eq. (5), after lineariza-

ion with respect to u and v we have

du

dτ
= −9δ3u

(
φT

1

)2 + 3δ4v,

dv

dτ
= 3δ3u

(
φτ

1

)2 − v.

(9)

he eigenvalues of the above system are

λ1 = 1
2
(−A − C),

λ2 = 1
2
(−A + C),

(10)

here

A = 1 + 34/3δ1/3
3 (1 − δ4)−2/3,

C =
√√√√ 1 − 2 ∗ 34/3δ1/3

3 (1 − δ4)−2/3 + 4 ∗ 34/3δ2
4

(δ3 − δ3δ4)−2/3 + 38/3δ2/3
3 (1 − δ4)−4/3

.
(11)

t is easy to know that λ1 is negative. Let L = A2 − C2, we have

= 12 ∗ 31/3(1 − δ4)
−2/3δ2/3

3

(
δ3 − δ2

4

)
. (12)

When δ3 > δ2
4 , we have L > 0. It is shown thatλ2 is negative. There-

ore, the solutions of (5) are asymptotically stable, which concludes

he proof.

Remark. The biological implication of Theorem 3.1 is that the

oncentrations of the monomers and trimers will eventually reach an

quilibrium if no active transport or diffusion is present [14].

. Analysis of the steady-state solution of the general model

This section presents analysis of the steady-state solution of the

eneral model in Eq. (4).

Let
∂φ1

∂τ
= 0 and

∂φ3

∂τ
= 0. Then, the dimensionless Eq. (4) is trans-

ormed into an ODE as follows

δ1ρ
∂2φ1

∂ρ2
+ ∂φ1

∂ρ
(δ1 − δ2ρ)− 3δ3ρφ3

1(1 − δ4)− δ2φ1 + ρ = 0,

ρ ∈ (η, 1),

∂φ1

∂ρ
− δ21φ1 = 0, for ρ = η or 1.

(13

It is difficult to obtain an analytical solution for the BVP in (13)

ecause it involves a nonlinear equation. However, we are only in-

erested in the positive solution of (13) that has relevant biological

eaning.

We rewrite IVP (13) as follows:

εφ1ρρ + f (ρ)φ1ρ + g(φ1, ρ) = 0, ρ ∈ (η, 1)

εφ1ρ − φ1 = 0, ρ = η or 1,

(14)

here

= δ1

δ2
, f (ρ) = ε

ρ
− 1, g(φ1, ρ) = −3āφ3

1 − φ1

ρ
+ 1

δ2
,

ā = δ3(1 − δ4)

δ2
. (15)

ote that ε is the ratio between diffusion and transport. Thus, ε � 1

eans the problem is diffusion-dominated, whereas ε � 1 indicates

hat the problem is transport-dominated.

Next, we establish the existence of a positive solution for the IVP

14).

By making change to variables

1 = exp
ρ

ε
u(ρ) (16)
q. (14) is written as

εuρρ = F(ρ, u, uρ),

uρ = 0, ρ = η or 1,
(17)

here F(ρ, u, uρ) is a continuous function, whose expression is given

y

(ρ, u, uρ) = −
(

1

δ2
e−ρ/ε − 3āe

2ρ
ε u3 +

(
1 + ε

ρ

)
uρ

)
. (18)

or the above Neumann boundary value problem (17), the appropri-

te notions of lower and upper solutions are given as follows:

efinition 4.1. A function α(ρ) is a lower solution of (17) that satisfies

αρρ ≥ F(ρ,α,αρ), αρ(η) ≥ 0, αρ(1) ≤ 0, (19)

function β(ρ) is an upper solution of (17) that satisfies

βρρ ≤ F(ρ,α,αρ), βρ(η) ≤ 0, βρ(1) ≥ 0. (20)

hen α(ρ) ≤ β(ρ), the Neumann boundary value problem (17) has

solution u(ρ) such that for all ρ ∈ [η, 1],

(ρ) ≤ u(ρ) ≤ β(ρ). (21)

heorem 4.2. Consider the BVP (17). If 3δ3(1 − δ4) < 1 and ε <
3η

− ln(3δ3(1−δ4))
, then (17) has a positive solution.

roof. First, we consider the function β(ρ) = 1. By substituting β(ρ)
nto (17), we obtain

3δ3(1 − δ4)e
2ρ
ε + e− ρ

ε (22)

hen 3δ3(1 − δ4) < 1 and ε <
3η

− ln(3δ3(1−δ4))
, we have

3δ3(1 − δ4)e
2ρ
ε + e− ρ

ε = e− ρ
ε
(
1 − 3δ3(1 − δ4)e

3ρ
ε

)
< 0. (23)

Substituting β(ρ) into the boundary condition in (17) yields

ρ = 0. (24)

hus, the function β(ρ) = 1 is an upper solution of (17).

Now, we let

(ρ) = e− 1
ε (3δ3(1 − δ4))

− 1
3 . (25)

ccording to (23), we have

(ρ) ≤ 1 = β(ρ). (26)

y substituting α(ρ) into (17), we obtain

e− ρ
ε − e

−3+2ρ
ε

m
= e− ρ

ε

(
1 − e

−3+3ρ
ε

)
m

≥ 0. (27)

t is easy to know that α(ρ) is a lower solution of Eq. (17). According

o [21,22], the boundary value problem (17) has a bounded positive

mooth solution φ(ρ) satisfying

< u(ρ) ≤ 1, ρ ∈ [η, 1], (28)

hich completes the proof.

According to (16), the solution φ1(ρ) of Eq. (14) is satisfied

xp

(
η

ε

)
u(ρ) ≤ φ1(ρ) ≤ exp

(
1

ε

)
u(ρ) (29)

s shown above, a steady-state solution for (14) exists for appropri-

te parameters. Specifically, 3δ3(1 − δ4) = 3Kα
p2

1

(k13+γ )2

γ
k13+γ

holds,

here the degradation parameter γ is very small and the equilibrium

onstant Kα is also small, according to [15]. Therefore, the condition

δ3(1 − δ4) < 1 is readily satisfied. It is also clear that the condition

<
3η

− ln(3δ3(1−δ4))
plays an important role in determining the positive

olution of (14).



202 Y. Wang et al. / Mathematical Biosciences 262 (2015) 198–205

0.5 0.6 0.7 0.8 0.9 1
0

2000

40004000

ρ

φ 3

 

 

ε=0.033
ε=0.025
ε=0.016

0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

ρ

φ 1

 

 

ε=0.033
ε=0.025
ε=0.016

Fig. 4. The steady states φ1 and φ3 of (14) for δ3 = 0.01 and δ4 = 0.998 respectively.

Table 1

The definitions and values of dimensionless parameters.

Processes Parameters Values

Equilibrium constant Kα 0.005

Diffusion ratio δ1 0.006

Transport ratio δ2 0.0795

Association efficiency δ3 0.0221

Degradation efficiency δ4 0.99502
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The solution of the nonlinear BVP (14) cannot be obtained using an

analytical method. If the parameter ε is small enough, this equation

can be solved using the singular perturbation method. At the end point

ρ = 1, there is a boundary layer for this problem and the asymptotic

solutions are very complicated. Instead, we can find the steady state

via numerical methods.

In Fig. 4, we plot the nondimensionalized φ1 and φ3 in the steady

state for different parameters. Numerical experiments demonstrate

that the parameter ε indeed plays a key role in determining Gag

protein concentrations near the cell membrane. This figure shows

that the monomeric and trimeric Gag proteins accumulate near the

cell membrane and that the concentration of trimers is higher than

that of monomers. In [19], the experimental data show that approx-

imately 85% of the protein is in the trimeric state while 15% is in the

monomeric state and that the proteins accumulate near the cell mem-

brane. Therefore, our numerical results are in quantitatively good

agreement with the experimental results.

5. Numerical simulations

In this section, we present numerical simulations for the model

problem (4) to analyze the behaviors of the intracellular Gag protein

monomers and trimers.

One important issue in the investigation of intracellular Gag pro-

tein movements is the time period when new HIV-1 virions first ap-

pear near the cell membrane. For convenience, we denote this time

period as Ta. We present numerical simulations for the estimation of

Ta and also examine the influence of the model parameters on Ta.

HIV-1 virions have a relatively wide range of diameters. In [20], it

is shown that 95% of HIV-1 virions have diameters between 119 nm

and 207 nm, corresponding to 3000 and 11, 000 Gag proteins, respec-

tively. In this study, we assume that an average immature HIV-1 virion

contains approximately 5000 copies of the Gag protein, as suggested

in [20]. This implies that a threshold concentration of 4958 μM near

the cell membrane is needed for new virions to appear.

5.1. Timing for New HIV-1 virions initial appearance on the plasma

membrane

Model (4) is a nonlinear initial boundary value problem. Therefore,

we apply a numerical method to analyze the model equations. The

numerical scheme combines the standard finite difference (see [23])

with Newton–Raphson iterations. The discretization scheme is listed

in Appendix A.
0 10 20 30 40 50 60 70 80 9090
0

0.5

1

1.5

2

τ

φ 1

ρ=0.2
ρ=0.4
ρ=0.6

Fig. 5. Solutions of Eq. 4 for ρ = 0.2, 0.4, 0.6
In Fig. 5, we plot the curves of φ1 and φ3 for three different lo-

ations (different ρ values in the cytoplasm). It is observed that the

alues of φ1 and φ3 for each ρ will reach a fixed constant after a short

ime period. Moreover, these values depend on ρ .

Using the same parameters, we plot the curves of φ1 and φ3 for

= 1 in Fig. 6. We observe that the values of φ1 and φ3 increase with

espect to time. At the same time, the concentration of Gag proteins

ear the cell membrane is higher than that in the cytoplasm.

These results indicate that a boundary layer exists at ρ = 1 for the

BVP (4). In this case, the equilibrium constant is Kα = 0.005(μM)−2,

nd the concentrations of f1 and f3 are 44.9605 and 4401.1, re-

pectively. The Gag monomer concentration does not exceed 1.5%,

hereas the Gag trimer concentration is at least 98.5%.

We now investigate the influence of the model parameters on Ta.

ere, Ta is understood as the time period when the concentration of

ag proteins reaches the threshold value 4958 μM.

As mentioned in [16], Gag proteins accumulate and assemble at

he plasma membrane. For simplicity, we consider only the nondi-

ensional concentration of φ1 and φ3 near the end point ρ = 1. The

orresponding concentrations of f1 and f3 near the cell membrane are
p1

k31+γ
φ1 and

p1
k31+γ

φ3, respectively.

We calculate Ta for different parameters and the values of param-

ters are listed Table 1. The results are plotted in Fig. 7. Ta increases

ith respect to parameters δ1, δ3, and Kα but decreases with respect

o δ2. These results indicate that fast diffusion, slow transport, and

ast association all benefit the production of new virions.

.2. Sensitivity analysis of model parameters

The sensitivity of Ta to a model parameter γ is defined as

(γ ) = Ta(δ, γ + 
γ )− Ta(δ, γ )

Ta(δ, γ )

γ


γ
, (30)

here γ and δ the disturbed and undisturbed parameters, respec-

ively.
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Fig. 6. Solutions of Eq. (4) for ρ = 1 and ε = 0.01, δ3 = 0.01, δ4 = 0.998.
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Fig. 7. Plots of time Ta(h) for different parameters. For subfigures (c) and (d), the values of parameters δ1 and δ2 are fixed at 0.0039801 and 0.012438, respectively.
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Table 2

Sensitivity of Ta to the model parameters.

S(δ) δ1 δ2 δ3 Kα

S 13.293 3.9027 0.081 0.082
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In this section, we measure the sensitivity of Ta to parameters

1, δ2 and δ3 and the equilibrium constant Kα . The results are listed in

able 1. For these calculations, the values of 
δi(i = 1, 2, 3) are 10%

f the corresponding parameters.

The results in Table 2 show that Ta is most sensitive to the diffu-

ion ratio δ1, and is also sensitive to the transport ratio δ2, but it is

ot sensitive to the association efficiency δ3. These results indicate

hat the perturbation of the diffusion and transport processes would

reatly affect the timing when the first new virions appear near the

ell membrane.

If we set the equilibrium constant to Kα = 0.005(μM)−2 according

o [15], we find that Ta is approximately 10.1 h based on the numerical

imulations and Fig. 7(d). In [16], the experiment showed that the Gag

rotein assembly became detectable beginning at approximately 11 h

ost-transfection under some conditions, as demonstrated by Gag-Pol

rocessing and extracellular particle release. The numerical results of

he model equation are in good quantitatively agreement with the

xperiment results.

In this situation, the concentrations of f1 and f3 are 46.3421(μM)
nd 4950.12(μM), respectively. This indicates that most of the Gag

roteins at the cell membrane remain in the trimeric state. In partic-

lar, at time t = Ta, the concentrations of Gag monomers and trimers

ear the cell membrane are 2% and 98%, respectively. These results

emonstrate that our model is capable of reproducing the experimen-

al data [19].
. Concluding remarks

This paper presents a modeling study using differential equations

o investigate the intracellular movement of HIV-1 Gag monomers

nd trimers. The monomers and trimers represent the two most im-

ortant Gag protein species and play significant roles in the formation

f HIV-1 immature virions. Our study is based on the assumptions that

ag monomers can diffuse in the cytoplasm and be transported by

otor proteins along microtubules, whereas there is no diffusion or

rafficking of Gag trimers. These assumptions are based on published

iological studies and are used for modeling simplicity. Considering

rafficking or diffusion of Gag trimers in a mathematical model will

ertainly provide more useful information about Gag protein intra-

ellular movements. This topic is currently under investigation and

ill be reported in our future work. In addition, to verify the stability

f HIV-1 Gag assembly, a stochastic model is expected in our next

esearch [24].

This study focuses on the time period from the initial production

f Gag protein monomers in the cytoplasm to the initial appearance
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of immature HIV-1 virions near the cell membrane. Specifically, in our

model, Ta is the time period when HIV-1 virions first appear near the

cell membrane. For this time period, it is reasonable to impose zero

total flux boundary conditions at both the inner and outer boundaries

of the cytoplasm, which are represented by ra and rb, respectively,

in our model. After time Ta, Gag multimerization will still occur near

the cell membrane, but this occurs simultaneously with the bud-

ding of HIV-1 virions from the cell membrane. For this time period, a

“leaking” boundary condition should be imposed at rb (the cell mem-

brane). Solving boundary value problems with a “leaking” boundary

condition is a mathematically interesting research topic and will also

contribute to a better understanding of the HIV-1 budding process.
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Appendix A. Discretization of the model equations

First, we discrete the model equations by the Crank–

Nicolson method. For simplicity, let φk
1n = φ1(n
ρ, k
τ) and φk

3n =
φ3(n
ρ, k
τ). The derivatives of φ1 with respect to τ and ρ are

respectively discretized as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂φ1

∂τ
= φk+1

1n − φk
1n


τ
,

∂2φ1

∂ρ2
= 1

2(
ρ)2

((
φk+1

1(n+1) − 2φk+1
1n + φk+1

1(n−1)

)

+
(
φk

1(n+1) − 2φk
1n + φk

1(n−1)

))
,

∂φ1

∂ρ
= 1

2

(
φk+1

1(n+1) − φk+1
1(n−1)

2
ρ
+ φk

1(n+1) − φk
1(n−1)

2
ρ

)
.

(A.1)

From the second equation in (4), we have

φk
3n = K1φ

k−1
3n + K2

(
φk

1n

)3
. (A.2)

Then (4) is discretized as follows

An

(
φk

1n

)3 + Bnφ
k
1n + Cnφ

k
1(n+1) + Dnφ

k
1(n−1)

= Enφ
k−1
1n + Fnφ

k−1
1(n+1) + Gnφ

k−1
1(n−1) + Hn,

n = 1, 2, . . . , N − 1, (A.3)

where

An = 3δ3
τ − 3δ3K2
τ, Bn = 1 + δ1
τ

(
ρ)2
+ δ2
τ

n
ρ
, (A.4)

Cn = − δ1
τ

2(
ρ)2
− kn
τ

4
ρ
, Dn = − δ1
τ

2(
ρ)2
+ kn
τ

4
ρ
,

En = 1 − δ1
τ

(
ρ)2
, Fn = δ1
τ

2(
ρ)2
+ kn
τ

4
ρ
,

Gn = δ1
τ

2(
ρ)2
− kn
τ

4
ρ
, Hn = 3δ4φ

k−1
3n 
τK1 + 
τ,

K1 = 1

1 + 
τ
, K2 = 
τδ3

1 + 
τ
, kn = δ1

n
ρ
− δ2.
pplying the boundary conditions leads to

A0

(
φk

10

)3 + φk
10(B0 − 2D0δ21
ρ)+ φk

11(C0 + D0)

= (E0 − 2G0δ21
ρ)φk−1
10 + φk−1

11 (F0 + G0)+ H0,

AN

(
φk

1N

)3 + φk
1N(BN + CN2δ21
ρ)+ φk

1(N−1)(DN + CN)

= φk−1
1N (EN + 2FNδ21
ρ)+ φk−1

1(N−1)(GN + FN)+ HN.

(A.5)

The systems (A.3) and (A.5) have N + 1 unknowns φk
10, . . . , φk

1N

nd are rewritten using vectors as

(Xk)Xk = PXk−1, (A.6)

here Xk = (φk
10, φk

11, . . . , φk
1N)T is the unknown vector and Q, P

re (N + 1)× (N + 1) matrices, which depend on Bn, Cn, Dn, Xk and

n, Fn, Gn, Hn, respectively.

At each time step τk = k
τ , Eq. (A.6) is a nonlinear algebraic equa-

ion, which is solved by the Newton–Raphson iterative method as

ollows

n = 0, 1, 2, . . . , Xk
0 = Xk−1,

Jn =
(

∂Q(Xk)(Xk)

∂Xk

)−1

|Xk=Xk
n
,


Xk
n = −Jn

(
Q

(
Xk

n

)(
Xk

n

) − PXk−1
)
,

Xk
n+1 = Xk

n + 
Xk
n

(A.7)

t is shown that Xk
n converges to Xk.
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