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Abstract. Recently, controllability of complex networks has attracted enormous attention in vari-
ous fields of science and engineering. How to optimize structural controllability has also become a significant
issue. Previous studies have shown that an appropriate directional assignment can improve structural con-
trollability; however, the evolution of the structural controllability of complex networks under attacks and
cascading has always been ignored. To address this problem, this study proposes a new edge orientation
method (NEOM) based on residual degree that changes the link direction while conserving topology and
directionality. By comparing the results with those of previous methods in two random graph models
and several realistic networks, our proposed approach is demonstrated to be an effective and competitive
method for improving the structural controllability of complex networks. Moreover, numerical simulations
show that our method is near-optimal in optimizing structural controllability. Strikingly, compared to the
original network, our method maintains the structural controllability of the network under attacks and
cascading, indicating that the NEOM can also enhance the robustness of controllability of networks. These
results alter the view of the nature of controllability in complex networks, change the understanding of
structural controllability and affect the design of network models to control such networks.

1 Introduction

In recent decades, complex networks have attracted much
attention in science and engineering fields [1,2]. Numerous
studies on the structure and dynamics of complex net-
works have been performed to understand the properties
of complex networks. These studies have led to notable
achievements in many areas, such as pinning control, syn-
chronization and cascading [3–15]. One of the most im-
portant aspects of complex networks lies in our ability to
control them. There are many excellent studies about the
controllability of complex networks governed by linear dy-
namics [16–19]. Structural controllability was proposed to
offer a general framework for controlling directed networks
with arbitrary structures while ignoring the configurations
of link weights [17]. Liu et al. [17] developed a minimum
input theory to investigate the ability to efficiently steer a
complex network from any initial state toward any desired
state and revealed that the minimum number of driver
nodes (ND) is determined by the set of maximum match-
ing. The ND refers to the number of control signals applied
to an arbitrary set of nodes to bring the system under con-
trol, qualitatively. Therefore, it is meaningful to optimize
the minimum driver nodes of complex networks.
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Several methods have been proposed to optimize the
controllability of complex networks. Wang et al. [20] op-
timized network controllability by connecting the fewest
number of edges between isolated control paths, thus, a
network can be controlled using only one control signal.
Based on the node residual degree, Hou et al. [21] proposed
a method to enhance network controllability by appropri-
ately assigning link direction. Xiao et al. [22] constructed
a switching network, found its maximum independent set
and obtained the minimum driver nodes and the fewest
number of edges that must be modified for optimal con-
trol while conserving entire topology. To decrease the
time complexity, they classified edges into three categories
based on directions: critical edge directions, redundant
edge directions and intermittent edge directions. They
then demonstrated that the existence of more critical edge
directions implies not only a lower cost for modifying inap-
propriate edges but also better controllability [23]. Finally,
they proposed a method called edge orientation by critical
directions (EOCD) to generate more critical edge direc-
tions. The EOCD method achieves near-optimal control-
lability. Compared to adding edges, it is more applicable
and economical to change the direction of edges. However,
the effects of edge directionality on network controllability
have not been completely investigated.
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Generally, systems are always confronted with at-
tacks and cascading. For example, in the internet, a node
denotes some information, an overload corresponds to con-
gestion, and an attack on several nodes may cause a col-
lapses [24]. The vulnerability of systems under various at-
tacks and cascading has been a significant issue in studies
of complex networks [25–27]. The removal of nodes gen-
erally changes the distribution of shortest paths, leading
to a global redistribution of loads over the entire network
and destroying some control routes. Therefore, we need to
consider how to maintain network controllability during
an attack. Wang et al. [28] proposed a greedy approach
by swapping connections to maintain structural controlla-
bility; however, this method has high computational com-
plexity; and cannot be applied to large-scale networks. For
an arbitrary network, we consider whether we can prop-
erly organize the edge direction of a complex network to
not only optimize network controllability but also opti-
mize network robustness.

To address these problems, this study proposes a new
edge orientation method (NEOM) based on residual de-
gree without changing network topology and directional-
ity. By comparing the results with the original networks
and networks constructed by EOCD in two random graph
models (i.e., the Erdös-Rényi (ER) model and scale-free
(SF) model) and several real systems, we demonstrate that
our approach is an effective and competitive method for
improving the structural controllability of complex net-
works. Numerical simulations show that our method is
near-optimal in optimizing structural controllability. Fur-
thermore, we show that our method can maintain the
structural controllability of the network under attack and
cascading. According to their roles in minimum driver
node set, these nodes are classified into three categories:
critical, redundant and intermittent. We show that our
method is likely to generate more redundant nodes, and
fewer critical and intermittent nodes. Moreover, using our
method, the characteristic path-length becomes longer
and assortativity becomes greater than in the original net-
work. Finally, we applied the NEOM to several realistic
networks to demonstrate its efficiency.

2 Preliminaries

2.1 Structural controllability

Given a network G = (V, E) of N nodes, we start our
study with a linear, time-invariant dynamical system de-
scribed as follows:

ẋ(t) = Ax(t) + Bu(t), (1)

where x(t) ∈ RN is the state of N nodes at time t, and
u(t) ∈ RM is the time-dependent input vector imposed by
the controller. Here, A ∈ RN×N stands for the adjcency
matrix of the system, and B ∈ RN×M describes the con-
trol matrix. The system (1) can denote as (A, B) and is
controllable if and only if Kalman’s controllability matrix

C = (B, AB, A2B, . . . , AN−1B) (2)

has full rank. Therefore, to fully control the network, we
need to choose the right B and u(t) to make C have
full rank. However, Kalman’s controllability condition (2)
is difficult to apply, because it is not easy to compute
rank (C) when C is a large-scale matrix. Fortunately,
structural controllability can be used to solve the prob-
lem. The system (A, B) is called structurally controllable
if it is possible to fix the free parameters in A, B to certain
values so that the obtained system (A, B) is controllable
in the usual sense, i.e., rank (C) = N [17]. The maximum
matching algorithm can be used to identify the minimum
numbers of driver nodes.

2.2 Cascading failure

Cascading failure of complex network is defined as one or
a few nodes or links failure (or attack, removal) which can
trigger the failure of other nodes or other links through
the interconnected relations, and it will cause the succes-
sive effect and lots of nodes failure, ever the collapse of the
whole network. Cascading failure occurs widely in many
systems, including power grids, the Internet and trans-
portation. Thus, the analysis of cascading failure plays
an important role in the vulnerability of complex net-
works. The related research can help us attain a com-
prehensive understanding of robustness and reliability of
complex networks.

The load on a node is defined as the total number of
shortest paths in network passing through the node [24].
The capacity of a node is the maximum load that the
node can handle. Because the capacity is subject to cost,
it is natural to assume that the capacity Cj of node j is
proportional to its initial load Lj [24]:

Cj = (1 + c)Lj , j = 1, 2, . . . , N, (3)

where the constant c > 0 is the tolerance parameter and N
is the size of the network. In this study, we chose c = 0.15.
When node j is attacked or removed, i.e., the edges that
connected to the node j is removed, the loads on all nodes
of network will then be redistributed. If the loads of some
nodes in a network are more than their capacity, we call
these nodes as overloaded nodes. Simultaneously, we con-
sider the corresponding nodes as the failed nodes and its
edges are removed from the network. In turn, this causes
a new redistribution of loads and subsequent failures. The
process continues until there are no overloaded nodes.

3 Using the NEOM to improve the structural
controllability and its robustness of complex
networks

3.1 Description of the proposed NEOM

Complex network systems are always confronted by at-
tacks and cascading failures that can easily damage their
normal functions. For many industries, such as the Inter-
net and power grids, the attacks and cascading failures
can easily cause a great deal of damage. Maintaining their
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Fig. 1. A schematic of the proposed NEOM. Given a directionality α = 0.8: (a) consider an undirected network with N = 6
nodes and 10 edges. Each node i is given the residual degree k′

i, which represents the number of undirected edges of node i. The
black and red lines represent undirected and directed edges, respectively. (b) Choose the node with the smallest residual degree
as the target node, i.e., n1, and find its neighbors, i.e., n2 and n6. Assign the outgoing direction from target node n1 to its
neighbors. Meanwhile, the residual degree of n2 and n6 is reduced by one and the residual degree of target node becomes zero,
i.e., k′

1 = 0. (c) Then, n2 is the smallest residual degree node among the neighbors of n1, so we choose n2 as the new target
node, find its neighbors n3, n5, n6, and repeat step (b). (d) Because the sum of the residual degree of n3 and that of n5 in the
previous steps are equal, we randomly choose n3 or n5 as a new target node. Here we choose n3 as the target node, find its
neighbors n4, n6, and repeat step (b). (e) Now, n4 is the new target node. Although k′

4 = k′
6 = 2 in step (d), the sum of residual

degree of n4 is smaller than that of n6 in the previous steps, so we choose n4 as the new target node, find its neighbors n5, n6,
and repeat step (b). However, we find that the number of directed links (#9) is greater than expected (#10 × 0.8 = 8), so we
sort the neighbor nodes (i.e., n5, n6) by descending residual degree, i.e., n6, n5, and then we turn the directed edge (n4 → n6)
to undirected edge (n4 − n6). Thus, all the directions are determined.

efficiency during such threats is a matter of the utmost
importance; therefore, enhancing network robustness and
controllability is of great significance.

The directedness of complex networks plays an impor-
tant role in emerging dynamical behaviors [29–32]. For
example, as a network gains more directed arcs, its small-
world behavior becomes weaker: The path length increases
and the clustering coefficient becomes smaller. Structural
changes related to the changing bidirectional edges to uni-
directional arcs are naturally expected to be reflected in
the dynamic properties of the network system [29]. So it
is also necessary to keep the directionality of complex net-
works unchanged.

The edge directions of network play an important
role in optimizing the controllability of complex networks.
Based on the residual degree k′, we propose a new edge ori-
entation method (NEOM) to optimize the controllability
of complex networks without changing the entire network
topology and directionality.

Consider an undirected network G (V, E). We change
edges from undirected to directed using a given probability
of α [29–32]. When α = 0, the network is identical to
undirected network. However, when α = 1, all edges in
the network become directed. For a given directionality,
the NEOM is described as follows:

Step 1. Consider an undirected network. Each node is
given a residual degree (the number of undi-
rected links of that node), denoted as k′.

Step 2. Choose the node with the smallest residual de-
gree in the network as the target node, denoted
as node i. If there are multiple such nodes, we
choose the one with the smallest sum of its resid-
ual degree in all the previous iterations.

Step 3. Assign the outgoing direction from the selected
node to its neighbors whose residual degrees are
nonzero. Thus, the residual degree of the selected
node becomes zero and the residual degree of
each node of those neighbors is reduced by one.

Step 4. If all directed links are determined, then stop. If
all directed links are less than expected, we pro-
ceed to step 5. Otherwise, we count the number
of the redundant directed links, denoted as m.
Then, we sort the neighbor nodes by descending
residual degree and denote them as i1, i2, . . . ,
il (where l > m). Afterwards, change the links
between node i and i1, i2, . . . , im from directed
to undirected, then stop.

Step 5. Choose the smallest k′ in the neighbors as the
new target node. If k′ equals zero, jump to step 2;
otherwise, jump to step 3. To further explain
the proposed NEOM, the schematic of a sim-
ple network with size N = 6 is shown in Fig-
ure 1. This framework illustrates how to op-
timize the controllability of complex networks
without changing the entire network topology
and directionality.

http://www.epj.org
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Fig. 2. The controllability of the original, NEOM and EOCD
networks (network constructed by NEOM and EOCD, respec-
tively), which are represented by square, circle and triangle,
respectively, as a function of 〈k〉. Each data point is an average
of 10 independent runs; the error bars represent the standard
deviation.

3.2 The NEOM can improve the structural
controllability of complex networks

To illustrate the efficiency of the NEOM, we compare it
with EOCD which is a near-optimal method. We use a
static model [33] to build a scale free (SF) network and
note that when γ → ∞, this model is equivalent to the ER
model (see detailed description in [17]). Compared to the
orginal network using ER and SF models with different av-
erage degrees and power laws, Figure 2 shows that NEOM
is effective and competitive for improving the structural
controllability of complex networks. Moreover, compared
to EOCD, which is a near-optimal method in optimize
the controllability of complex network [23], NEOM is
clearly more efficient-which means that the NEOM is also
near-optimal.

3.3 The NEOM can enhance the robustness
of controllability of complex networks

The function of systems will be affected by the removal of
a few nodes in the network. For example, a node attack on
a circuit network can affect the current supply; sometimes
the current load can paralyze the whole network. Cascad-
ing failures and intentional attacks can easily damage net-
work functionality; therefore, it is meaningful to propose a
method to enhance the robustness of the controllability of
complex networks against attacks and cascading failures.

For a given network, the robustness can be improved
in many ways. Adding edges without any other restric-
tions would be feasible, but it is impractical because
the cost of each network edge cannot be ignored. Under
this constraint, Wang et al. [28] propose to swap connec-
tions to maintain the structural controllability of complex
networks. However, this method has high computational
complexity. Therefore, it is not suitable for large-scale
networks.

Fig. 3. The fraction of driver nodes as a function of removal
fraction f under intentional attack and cascading based on
node betweenness. (a) ER network, (b) SF network with γ =
2.1, (c) SF network with γ = 2.5, (d) SF network with γ = 3.
The open and solid symbols represent the original network and
the NEOM network, respectively.

Schneider et al. [34] proposed the following measure
by considering the size of the largest component of an
undirected network against malicious attacks:

R =
1
N

1∑

q=1/N

s(q), (4)

where N is the number of vertices and s(q) is the frac-
tion of vertices in the largest component of the undirected
network after attacks on qN nodes. Here, R is normalized
by 1/N so that the robustness of networks with different
sizes can be compared.

Analogously, Xiao et al. [35] proposed a robustness in-
dex CR to assess the evolution of controllability by node
removal:

CR =
1
N

1∑

q=1/N

(1 − nd(q)), (5)

where nd(q) is the fraction of minimum driver nodes in
the remaining network after attacking qN nodes. A larger
CR means that the robustness of network controllability
is better.

To investigate the robustness of controllability of a
NEOM network (network constructed by NEOM), in our
numerical experiments, we use ER and SF (γ = 2.1, 2.5
and 3) networks with network size N = 1000, 〈kin〉 =
〈kout〉 = 3 as the example. Throughout our study, we as-
sume that vertices are attacked according to their high-
betweenness. Other attack strategies can also be used.

As shown in Figure 3, compared to the original net-
work, the NEOM network requires fewer driver nodes to
achieve the target states after attacks on qN nodes (where
1/N � q � 1). According to the definition of CR, the
NEOM can enhance the robustness of controllability (as
shown in Fig. 4). Besides, our method keeps the topology
and directionality unchanged, making it more practicable
than CR for swapping connectivity.

http://www.epj.org
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Fig. 4. The robustness index CR of NEOM network and origi-
nal network. All these in turn are ER network, SF network with
γ = 2.1, SF network with γ = 2.5 and SF network with γ = 3.
The open and solid symbols represent the original network and
NEOM network, respectively.

Fig. 5. The fraction of driver nodes as a function of the average
degree of a network after an intentional attack and cascading
based on node betweenness. (a) ER network, (b) SF network
with γ = 2.1, (c) SF network with γ = 2.5, and (d) SF network
with γ = 3.

Then, we study the number of failed edges to explain
why the number of driver nodes of the NEOM network
after attack and cascading is smaller than that of the orig-
inal network. For the ER network, the number of driver
nodes of the network [17] is given by:

nd ≈ e−
〈k〉
2 . (6)

Equation (6) shows that the number of driver nodes is neg-
atively correlated with the average degree of the network
for ER network. To further investigate the relationship
between them after an intentional attack and cascading,
we used a network with size N = 1000, and 〈k〉 = 3 as
an example to perform numerical simulations. Our results
demonstrated that the number of driver nodes is indeed
negatively correlated with the average degree of the net-
work after intentional attack and cascading, as shown in
Figure 5. At the beginning, we construct the NEOM net-
work without changing the topology and directionality, so
the number of edges in the NEOM network is the same as
that of the original network. As shown in Figure 6, after
an attack on the f (0 < f < 1) fraction of nodes, the
number of failed edges in NEOM network is less than the

Fig. 6. The fraction of failed edges as a function of removing
the fraction f nodes under an intentional attack and cascading
based on high-betweenness. (a) ER network, (b) SF network
with γ = 2.1, (c) SF network with γ = 2.5, and (d) SF network
with γ = 3. The open and solid symbols represent the original
network and the NEOM network, respectively.

original network. The smaller the number of failed edges
is, the greater the average degree is, which means that the
number of driver nodes of the NEOM network is smaller
than that of original network. The same reasons apply to
the SF network.

4 Effect of the NEOM on network
characteristics

To investigate the feature difference between the NEOM
network and the original network, we studied the changes
in three categories of nodes. According to their roles in the
minimum driver node set (MDS), these nodes are classified
into three different types: ‘critical’ that is a part of MDSs,
‘redundant’ that is not in any MDSs, and ‘intermittent’
that is neither critical nor redundant [17]. The minimum
driver nodes are composed of critical nodes and parts of
intermittent nodes.

We randomly generated 1000 ER and SF networks and
then reconstructed the networks by using the NEOM.
To determine whether the features between the original
network (O) and the NEOM network (N) were signifi-
cantly different, we performed a non-parametric one-tailed
Wilcoxon rank sum test and used the p-value of that test
as a measure of the difference in the two networks. As
shown in Figure 7, the number of three categories of nodes
in the NEOM network are separately significantly differ-
ent from those in original network, causing all the p-values
to approach zero. Figure 7 also shows that the NEOM is
more likely to produce more redundant nodes, but fewer
critical and intermittent nodes (the p-values were: critical
nodes: p = 3.4142e-23, redundant nodes: p = 8.8296e-82,
and intermittent nodes: p = 1.8734e-73).

In addition to these changes in node types, compared
to the original network, the NEOM can also influence some
topology characteristics. We measure two quantitative in-
dexes as follows: (i) the characteristic path length l [20],
defined by l−1 =

∑
i�=j d−1

ij /N(N − 1), where dij means

http://www.epj.org
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Fig. 7. Comparison of three different types of nodes between
the original network (O) and networks constructed by the
NEOM (N). We randomly generate 1000 ER and SF networks
with 2 � 〈k〉 � 14, γ = 2, 1, 2.5, 3 and 3.5. All the networks
were of size N = 1000; (a) represents the fraction of critical
nodes (FCN); (b) the fraction of redundant nodes (FRN), and
(c) the fraction of intermittent nodes (FIN). p-values are from
a one-tailed Wilcoxon rank sum test.

Fig. 8. Comparison of the characteristic path length and as-
sortativity coefficient between the original network (O) and
NEOM network (N) with 2 � 〈k〉 � 14, γ = 2, 1, 2.5, 3 and 3.5.
All networks were of size N = 1000.

the shortest path length starting from node i to node j,
and (ii) the assortativity coefficient defined as [36]:

r =
M

∑
i liki − [M−1

∑
i

1
2 (li + ki)]2

M−1
∑

i
1
2 (l2i + k2

i ) − [M−1
∑

i
1
2 (li + ki)]2

, (7)

where li and ki are the degrees of the nodes at the ends
of the ith edges with i = 1, . . . , M.

The assortativity coefficient of a network depends on
the fact that nodes with many connections tend to be con-
nected to other nodes with many connections, i.e., there is
a greater preference for high-degree nodes to be connected
to other high-degree nodes than for high-degree nodes to
be attached to ones of lower-degree. When r = 1, all nodes
connect only with nodes of the same degree; when r = 0,
any node can randomly connect to any other node, and
when r = −1, all nodes must connect to nodes with dif-
ferent degrees.

We randomly generate ER and SF networks with
2 ≤ 〈k〉 ≤ 14, γ = 2.1, 2.5, 3 and 3.5. All networks
were of size N = 1000. Figure 8a describes the changes
in characteristic path length of the networks, while Fig-
ure 8b describes the change of the assortativity coefficient

Fig. 9. The controllability of the NEOM network and original
network. All these in turn are Macaque brain, Adj Noun, s838
network and Segrass network. The open and solid symbols rep-
resent the original network and NEOM network, respectively.

of the networks. The p-value of the test is used as a mea-
sure of the difference. Because both p-values are far less
than 0.01, the changes of characteristic path length and
assortativity coefficients of networks are significantly dif-
ferent. As Figure 7 shows the path length becomes longer
and assortativity becomes greater than that of the original
network.

5 Application of the NEOM to several
real networks

Finally, we apply the NEOM to four real networks1:
(1) The macaque brain network consists of 383 hierar-
chically organized regions spanning cortex, thalamus, and
basal ganglia. It includes 6,602 directed long-distance con-
nections. (2) In the Adj Noun network, the nodes repre-
sent the most commonly occurring adjectives and nouns
in the novel David Copperfield by Charles Dickens, and
edge connects a pair of nodes that appear adjacent to one
another at any point in the book. (3) The s838 network
is an electric circuit. In this network, the nodes represent
logic gates and flip-flops and edges represent directed elec-
tronic transmission paths. (4) The seagrass network is the
predatory interactions among species. A directed link of
the network is drawn from the prey to the predator. As
shown in Figure 9, compared to the original network, the
NEOM network needs fewer driver nodes. Figure 10 also
indicates that the structural controllability of NEOM net-
work is better than that of the original network under
attacks and cascading failures, which means that NEOM
network is more robust than the real networks (as shown
in Fig. 11). Thus, the NEOM cannot only apply to random
models, but also real network models.

6 Discussion

Our understanding of natural or technological systems
depends upon our ability to control them. Robustness

1 http://boseinst.ernet.in/soumen/Network_

Controllability_Datasets.html
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Fig. 10. The fraction of driver nodes of real systems as a
function of removing fraction f under an intentional attack and
cascading. (a) Macaque brain network, (b) Adj Noun network,
(c) Seagrass network, and (d) s838 network. The open and
solid symbols represent the original network and the NEOM
network, respectively.

Fig. 11. The robustness index CR of NEOM network and orig-
inal network. All these in turn are Macaque brain, Adj Noun,
s838 network and Segrass network. The open and solid sym-
bols represent the original network and NEOM network,
respectively.

implies the degree of continuing functionality of a network
under intentional attacks and cascading failures. Many
methods have been proposed to optimize the controlla-
bility or robustness of complex networks, such as adding
edges, or assigning edges properly. Compared to adding
edges, it is of more practical significance to reveal the di-
rectional effects on the controllability and robustness of
complex networks. In this work, we propose a new method
for constructing a network without changing its topol-
ogy and directionality and find that both controllability
and robustness can be optimized simultaneously. By com-
paring the results with those of previous methods in two
random graph models, i.e., ER model and SF model, we
demonstrate that our proposed approach is not only near-
optimal in optimizing structural controllability, but also
can maintain that the controllability under intentional at-
tacks and cascading failures. According to the definition of
robustness of controllability, we show that this method can
enhance the robustness of controllability. An additional
feature of our method is that it can improve both the

average path length and assortativity. This is significant
in designing of network models to control such networks.

Many real-world networks are coupled into multi-
plexed communication networks and are nonlinear sys-
tems, whereas all results in this paper are discussed in
reference to isolated networks and linear systems; there-
fore our future work will involve our method to the real-
world systems. Moreover, more and more attentions has
been given to observability, target control, control energy
and other significant problems [37–43]; therefore it is nec-
essary to determine the relationship between directness
and those dynamic processes.
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