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The controlling of complex networks is one of the most challenging problems in modern
network science. Accordingly, the required energy cost of control is a fundamental and
significant problem. In this paper, we present the theoretical analysis and numerical
simulations to study the controllability of complex networks from the energy perspective.

First, by combining theoretical derivation and numerical simulations, we obtain lower
bounds of the maximal and minimal energy costs for an arbitrary normal network, which
are related to the eigenvalues of the state transition matrix. Second, we deduce that
controlling unstable normal networks is easier than controlling stable normal networks
with the same size. Third, we demonstrate a tradeoff between the control energy and the
average degree (or the maximum degree) of an arbitrary undirected network. Fourth,
numerical simulations show that the energy cost is negatively correlated with the degree
of nodes. Moreover, the combinations of control nodes with the greater sum of degree
need less energy to implement complete control. Finally, we propose a multi-objective
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optimization model to obtain the control strategy, which not only ensures the fewer
control nodes but also guarantees the less energy cost of control.

Keywords: Complex networks; controllability; control energy; control strategy; multi-
objective optimization.

1. Introduction

In many areas of science and engineering, a number of realistic systems can be
represented as complex networks, such as telecommunication networks, computer
networks, biological networks, cognitive and semantic networks, and social networks
[2, 8, 22, 17, 12, 13]. The controllability of complex networks becoming one of the
most important and challenging problems in these fields. In recent years, many
progresses have been made in the study of controllability of complex networks
[15, 25, 34, 7, 31, 4, 23, 30]. However, even if a network is controllable in principle,
it may not be controllable in practice if it costs an infinite amount of energy or if it
requires too much time to achieve the control goal [33]. Therefore, the energy cost
of control is an important and unavoidable problem when controlling a complex
network in practice.

To identify a degree of quality of complete controllability, Muller et al. pro-
posed three energy-related measures: trace, determinant and maximum eigenvalue
of the inverse characteristic Gramian matrix [21]. Based on these three measures,
Yan et al. showed reasonable bounds for estimating the lower and upper control
energies [33]. Pasqualetti et al. focused on the tradeoffs between control energy
and the number of control nodes, and on the design of a distributed control strat-
egy, as opposed to scaling laws for the control energy as a function of the control
horizon [24]. Summers and Lygeros showed an important class of metrics based on
the controllability and observability Gramians [27]. Sun and Motter revealed that
there is a tradeoff between nonlocality of the control trajectory in the phase space
and nonlocality of the control inputs in the network itself [28]. More recent study
demonstrated that several classes of energy-related controllability metrics have a
strong structural property, which is called submodularity [5].

Despite great advances in the quantitative evaluation of controllability of com-
plex networks, there are still many problems that are deserved to be explored, for
example, the relationship between network topology and its energy cost of control,
and setting up the control strategy not only ensures the fewer control nodes but
also guarantees the lower energy cost for controlling complex networks.

In this study, we focus on estimating the bounds of energy cost for controlling
complex networks by using the matrix algebra theory and graph theory, especially
quantifying the minimal energy cost Emin and the maximal energy cost Emax,
respectively. By combining theoretical derivation and numerical simulations, we
reveal how the network structure and node degree may affect the energy cost. Based
on these preliminary results, we propose a multi-objective optimization model to
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design control strategy of complex networks, which not only ensures the fewer
control nodes but also guarantees the lower energy cost of controllability. These
results provide an important step on controllability towards ultimately realistic
control of complex networks.

2. The Dynamical Description of Complex Networks
and Preliminary Results

To explore the energy cost of complex networks, we study the linear time-invariant
dynamic system [16]. Suppose that the network dynamics with n nodes can be
described by the following time-invariant ordinary differential equations (ODEs)

dx(t)
dt

= Ax(t) + Bu(t), (1)

where x(t) = (x1(t), . . . , xn(t))T stands for states of n nodes at time t, for example,
xi(t) can be the concentration of mRNAs in a gene regulatory network. Matrix
A ∈ Rn×n stands for the state transition matrix of the system, describing system
interactions strength of links, aij represents the weight of a directed link from node
j to i. Matrix B ∈ Rn×m stands for the control matrix, u(t) = (u1(t), . . . , um(t))T

stands for the m control signals.
The network described by Eq. (1) is said to be completely controllable if it can

be steered from any initial state to any desired final state in finite time. The Kalman
controllability matrix of a network can be defined as follows:

C = [B, AB, . . . , An−1B]. (2)

The network is completely controllable if and only if the Kalman controllability
matrix has full rank [11], that is

rank(C) = n. (3)

To be able to apply Eq. (3) to an arbitrary network, we need to know the values
of elements in matrices A and B. However, for most real complex networks, they are
either unknown or are known only approximately and are time dependent. Lin [14]
proposes a concept of structural controllability. Controllability of complex networks
is addressed in terms of structural control theory [15], where a maximum matching
algorithm in graph theory is used to identify the minimal set of driver nodes to
control an entire network.

For the n-dimensional linear time-invariant dynamics, giving the certain initial
state x0 = 0, the certain target state xf and the time interval [0, tf ], the energy
cost with the control input u(t) can be defined as

ε(u(t), tf ) =
∫ tf

0

‖u(t)‖2
dt. (4)
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A method to evaluate the qualities of controllability is to consider the fixed-time
minimum-energy control problem. It is defined as follows [10]:

min
u(t)∈L2

∫ tf

0

‖u(t)‖2dt

s.t.

{
ẋ(t) = Ax(t) + Bu(t)

x(0) = 0, x(tf ) = xf , [0, tf ]fixed.

(5)

If the system is completely controllable, then the minimum control energy is
given by ∫ tf

0

‖u∗(t)‖2dt = xT
f W−1

tf
xf , (6)

where the matrix Wtf
=
∫ tf

0 eAtBBT eAT tdt is called the controllability Gramian
matrix at time tf , and the optimal input has the form

u∗(t) = BT eAT (tf−t)W−1
tf

xf . (7)

For the Gramian matrix, it is positive definite when the system is completely
controllable. In the following, we focus on the normalized energy cost [33]:

E(u(t), tf ) = ε(u(t), tf )
/

‖xf‖2 =
xT

f W−1
tf

xf

xT
f xf

. (8)

Based on the Rayleigy–Ritz theorem [6], the bound of the normalized energy cost
[33] was given by

1
λmax(Wtf

)
= Emin ≤ E(u(t), tf ) ≤ Emax =

1
λmin(Wtf

)
, (9)

where λmax(Wtf
) and λmin(Wtf

) are the maximal and minimal eigenvalues of the
controllability Gramian matrix Wtf

, respectively, and Emin and Emax are called the
minimal energy and the maximal energy, respectively.

In the following, we use two energy-related measures of controllability, i.e., trace
and maximum eigenvalue of the inverse characteristic Gramian matrix [33]. The first
measure of controllability is given by the average value of the minimum control
energy over the unit hypersphere {x : ‖x‖ = 1}. For practical applications, it is
desirable to maintain the average costs in Eq. (10) as small as possible∫

‖x‖=1 xT W−1
tf

xdx∫
‖x‖=1 dx

=
1
n

trW−1
tf

. (10)

Another measure of controllability is given by the maximum value of the mini-
mum control energy over the unit ball {x : ‖x‖ = 1} as shown in Eq. (11). For real
systems it is desirable to have the maximum eigenvalue of W−1

tf
as small as possible

max
‖x‖=1

xT W−1
tf

x = λmax(W−1
tf

) =
1

λmin(Wtf
)
. (11)

1550018-4

A
dv

s.
 C

om
pl

ex
 S

ys
t. 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 D
r.

 X
iu

fe
n 

Z
ou

 o
n 

10
/0

6/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



2nd Reading

September 14, 2015 15:15 WSPC/S0219-5259 169-ACS 1550018

Estimation of Control Energy and Control Strategies

3. Bounds of Control Energy for Complex Networks

3.1. Lower bounds of maximal and minimal energy costs

Theorem 3.1. Consider a network G = (V, E) with |V | = n, weighted adjacency
matrix A, and control set K. For any certain initial state x0 and any certain target
state xf , if the system can transform between x0 and xf in the finite time [0, tf ].
Assume that λmin(A+AT ) �= 0 and A is a normal matrix, then it holds

Emax ≥ λmin(A+AT )
etf λmin(A+AT ) − 1

, (12)

Emin ≥ λmax(A+AT )
etf λmax(A+AT ) − 1

. (13)

Proof. Because

W
(n)
tf

=
∫ tf

0

Φ(tf , s)BBT ΦT (tf , s)ds

=
∫ tf

0

Φ(tf , s)ΦT (tf , s)ds =
∫ tf

0

e(tf−s)(A+AT )ds

=
∫ tf

0

∞∑
n=0

(tf − s)n(A + AT )n

n!
ds =

∞∑
n=0

(A + AT )n

n!

∫ tf

0

(tf − s)nds

=
∞∑

n=0

(A + AT )n

n!
tf

n+1

n + 1
.

Then

λmin(W (K)
tf

)

≤ λmin(W (n)
tf

) = λmin

( ∞∑
n=0

(A + AT )n

n!
tf

n+1

n + 1

)

=
∞∑

n=0

(λmin(A + AT ))n

n!
tf

n+1

n + 1

=
1

λmin(A + AT )

∞∑
n=0

(λmin(A + AT )tf )n+1

(n + 1)!

=
etf λmin(A+AT ) − 1

λmin(A+AT )
.

Therefore

Emax =
1

λmin(W (K)
tf

)
≥ λmin(A+AT )

etf λmin(A+AT ) − 1
.
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In a similar way, we can also prove

Emin ≥ λmax(A+AT )
etf λmax(A+AT ) − 1

.

For convenience in following discussion, we denote that

Emax−LB =
λmin(A+AT )

etf λmin(A+AT ) − 1
Emin−LB =

λmax(A+AT )
etf λmax(A+AT ) − 1

. (14)

Corollary 3.1. Consider a network G = (V, E) with |V | = n, weighted adjacency
matrix A(A = AT ), and control set K. For any certain initial state x0 and any
certain target state xf , assume that the system can transform between x0 and xf

in the finite time [0, tf ], and λmin(A) �= 0, then it holds

Emax ≥ 2λmin(A)
e2tf λmin(A) − 1

, (15)

Emin ≥ 2λmax(A)
e2tf λmax(A) − 1

. (16)

3.2. Numerical simulations of bounds

To validate the estimated bounds in Theorem 3.1, we simulate one simple network
and two random networks with 100 nodes, i.e., ER [3] and BA networks [1]. As
shown in Fig. 1(a), this simple normal network is composed of 3 nodes and 6
edges, where A is the adjacency matrix and an input control signal directly to
control the node 1. In two random networks, A is the adjacency matrix, in which

(a) (b)

Fig. 1. (a) A simple normal network diagram, which is composed of 3 nodes and 6 edges. In this
network, A is the adjacency matrix and an input control signal directly to control the node 1. (b)
The curves of the energy costs evolve over time tf , where Emax and Emin represent the maximal
and minimal energy costs, respectively. Emax−LB and Emin−LB represent the lower bounds of
the maximal and minimal energy costs, respectively. (a) A simple normal network and (b) the
numerical results of control energy.
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(a) (b)

Fig. 2. The curves of the energy costs evolve with control time tf . Here A is the adjacency matrix
in which we add self-loops as Aii =

Pn
i,j=1 Aij , and B = [1, 0, . . . , 0]T . (a) is ER network and (b)

is BA network.

we add self-loops as Aii =
∑n

i,j=1 Aij . Using the method proposed in [15], we
can find that the network is controllable by any single driver node. Therefore, we
inject an input control signal on node 1. We calculate Emax, Emin, Emax−LB and
Emin−LB according to Eqs. (9) and (14), respectively. Figures 1(b), 2(a) and 2(b)
show that numerical results are consistent with our estimated bounds [see Eqs. (12)
and (13)].

Remark 1. Theorem 3.1 gives a lower bound of the maximal and the minimal
energy costs for an arbitrary normal network. (1) Through numerical simulations,
we find that the bound estimate is reasonable. Moreover, this theorem uncovers
that the energy cost of complex networks is relevant to the eigenvalue of the state
transition matrix, and we can approximately estimate the range of energy cost by
λmin(A + AT ) and λmax(A + AT ). (2) From what has been discussed above, we
can easily obtain that Emax = Emax−LB and Emin = Emin−LB when all nodes
are directly driven, and otherwise Emax > Emax−LB and Emin > Emin−LB. More
accurately, if xf is the unit eigenvector of λmin of Wtf

, then E(u∗(t), tf ) = Emax =
Emax−LB, and E(u∗(t), tf ) = Emin = Emin−LB when xf is the unit eigenvector of
λmax of Wtf

. As shown in Fig. 3, we give optimal control signals and trajectories
for the network in Fig. 1(a) at two different desired states (the unit eigenvectors of
λmin and λmax of Wtf

).

3.3. Control time and bounds of energy costs

Theorem 3.2. Consider a network G = (V, E) with |V | = n, weighted adjacency
normal matrix A, and control set K. For any certain initial state x0 and any certain
target state xf , assume that the system can transform between x0 and xf in the finite
time tf .
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(a) (b)

Fig. 3. (a) Optimal control signal µEmin (µEmax ) which minimizes (maximizes) the energies
required to move the network from the initial state x0 = [0, 0, 0]T to desired states xEmin (xEmax)
with ‖xEmin‖ = 1 (‖xEmax‖ = 1) in the given time interval t ∈ [0, 1], where xEmin (xEmax ) is
the unit eigenvector of λmax (λmin) of Wtf . (b) The trajectories of the network state x(t) driven,
respectively, by the control signals in (a).

1. For Emax−LB, we have the following two conclusions:

(1) When tf is small (tf � 1/|λmin(A + AT )|), then it holds

Emax−LB ≈ 1
tf

.

(2) When tf is large (tf � 1/|λmin(A + AT )|)
(i) A + AT is positive definite, then it holds

Emax−LB = O(e−tf λmin(A+AT ))(tf → ∞).

(ii) A + AT is not positive definite, then it holds

Emax−LB ≈ −λmin(A + AT ).

(iii) A + AT is positive semi-definite, then it holds

Emax−LB ≈ 1
tf

.

2. For Emin−LB, we have the following two conclusions :

(1) When tf is small (tf � 1/|λmin(A + AT )|), then it holds

Emin−LB ≈ 1
tf

.

(2) When tf is large (tf � 1/|λmax(A + AT )|)
(i) A + AT is not negative definite, then it holds

Emin−LB = O(e−tf λmax(A+AT ))(tf → ∞).
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(ii) A + AT is negative definite, then it holds

Emin−LB ≈ −λmax(A + AT ).

(iii) When the minimum eigenvalue of A + AT is zero, then it holds

Emin−LB ≈ 1
tf

.

Proof. For Emax−LB,

(1) Because (tf � 1/|λmin(A + AT )|), then we can approximate estimate

etf λmin(A+AT ) − 1 ≈ tfλmin(A + AT ).

Therefore, we have

Emax−LB =
λmin(A+AT )

etf λmin(A+AT ) − 1
≈ λmin(A+AT )

tfλmin(A+AT )
=

1
tf

.

(2) (i) Because A+AT is positive definite, then λmin(A+AT ) > 0. Therefore, when
tf is large (tf � 1/|λmin(A + AT )|), we have

lim
tf→∞

λmin(A+AT )
etf λmin(A+AT ) − 1

/
e−tf λmin(A+AT ) = λmin(A+AT ).

Then

Emax−LB =
etf λmin(A+AT ) − 1

λmin(A+AT )
= O(e−tf λmin(A+AT ))(tf → ∞).

(ii) Because A + AT is not positive definite, then λmin(A + AT ) < 0. When
(tf � 1/|λmin(A + AT )|), we can approximate estimate

etf λmin(A+AT ) ≈ 0.

Therefore, we have

Emax−LB =
λmin(A+AT )

etf λmin(A+AT ) − 1
≈ −λmin(A+AT ).

(iii) Because A + AT is positive semi-definite, then λmin(A + AT ) = 0. we can
be approximately estimated as

Emax−LB ≈ lim
λmin(A+AT )→0

λmin(A+AT )
etf λmin(A+AT ) − 1

=
1
tf

.

In a similar way, we can also prove above theorem for Emin−LB.
In order to validate our results, we use three networks to calculate their energy

bounds. Among these networks, A1 +A1
T is negative definite as shown in Fig. 4(a),

A2 +A2
T is positive definite as shown in Fig. 5(a), and A3 +A3

T is neither positive
definite nor negative definite as shown in Fig. 6(a). Here the input control signal
directly to control the node v1 in three networks. According to Eq. (14), we can
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(a) (b)

Fig. 4. This network is negative definite (λmin(A1 +AT
1 ) = −3.14 and λmax(A1 +AT

1 ) = −0.59).
Here the input control signal directly to control the node v1. (a) The negative definite network
and (b) the numerical results.

(a) (b)

Fig. 5. This network is positive definite (λmin(A2 + AT
2 ) = 0.59 and λmax(A2 + AT

2 ) = 3.14).
Here the input control signal directly to control the node v1. (a) The positive definite network
and (b) the numerical results.

obtain the lower bounds of the maximal and the minimal energy over control time
tf . The figures at the right column in Figs. 4–6 demonstrate the correctness of the
theoretical results for the estimated lower bounds of Emin and Emax.

Remark 2. Theorem 3.2 gives approximate estimates of lower bounds of Emin

and Emax with the control time tf in two different regimes separated by the char-
acteristic time. More meaningfully, through this theorem, we discover the following
results. For an arbitrary network, when it is stable, then limtf→∞ Emax−LB =
−λmin(A + AT ) > 0 and limtf→∞ Emin−LB = −λmax(A + AT ) > 0. Yet, if it
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(a) (b)

Fig. 6. (a) This network is neither positive definite nor negative definite (λmin(A3+AT
3 ) = −4.24

and λmax(A3 + AT
3 ) = 0.24). Here the input control signal directly to control the node v1. (b)

The numerical results of control energy.

is positive definite, then limtf→∞ Emax−LB = limtf→∞ Emin−LB = 0. Accord-
ing to Eq. (12) and (13), we find that Emin ≥ −λmax(A + AT ) > 0 and
Emax ≥ −λmin(A + AT ) > 0 when it is stable, but if it is positive definite, it
may be Emax, Emin → 0(tf → ∞). Therefore, we can obtain the following conclu-
sion: controlling unstable normal networks is easier than controlling stable normal
networks with the same size. In order to further validate the above claim, we simu-
late two simple normal networks as shown in Figs. 4(a) and 5(a) and the results are
drawn in Figs. 7(a) and 7(b). These numerical results are consistent with our claim.

(a) (b)

Fig. 7. (a) and (b) represent the maximal and minimal energy costs for the stable and unstable

normal networks, respectively. We simulate two simple normal networks as shown in Figs. 4(a)
and 5(a). Here the input control signals directly to control nodes v1 and v2 and (b).
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4. The Degree of Nodes and Energy Cost of Control

4.1. Theoretical results

Lemma 4.1 ([32]). For an undirected graph G = (V, E) with n nodes, let A =
(aij)n×n be the adjacent matrix of G. Then the degree of vertex i is the element bii

in A2, here A2 = (bij)n×n.

Lemma 4.2 ([26]). Let G be a simple connected undirected graph with n vertices,
the maximum degree dmax, the minimum degree dmin and the spectral radius ρ(G).
Then

dmin ≤ ρ(G) ≤ dmax.

Lemma 4.3 ([26]). Let G be a simple connected undirected graph with n vertices,
dmax be the maximum degree and dsecond−max be the second largest degree. If there
are p vertices with dmax, then

ρ(G) ≤
dsecond−max − 1 +

√
(dsecond−max + 1)2 + 4p(dmax − dsecond−max)

2
.

The equality holds if and only if G is a dmax− regular graph or G ∼= Kp∇H , where
H is a(dsecond−max − p) − regular graph with n − p vertices.

Theorem 4.1. Consider a network G = (V, E) with |V | = n, adjacency matrix
A(A = AT ). For any initial state x0 and any target state xf , assume that the
system can transform between x0 and xf in the finite time [0, tf ]. Let the average
degree of G be 〈k〉, when A is positive definite and tf is big enough, we have

Emax ≥ 2
√〈k〉

e2tf

√
〈k〉 − 1

. (17)

Proof. When A is positive definite, then the eigenvalues of A are λmax = λn ≥
λn−1 ≥ · · · ≥ λ1 = λmin > 0. According to Lemma 4.1, we have

n∑
i=1

ki =
n∑

i=1

bii = tr(A2) =
n∑

i=1

λ2
i ≥ nλ2

min.

Therefore

λmin ≤
√√√√ n∑

i=1

ki

/
n =

√
〈k〉.

Considering a function

f(x) =
2x

e2tf x − 1
x ∈ [λmin,

√
〈k〉].

Taking the derivative of f(x), we have

f ′(x) =
2(1 − 2tfx)e2tf x − 2

(e2tf x − 1)2
x ∈ [λmin,

√
〈k〉].
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When tf is big enough, we have

f ′(x) < 0.

Then

f(λmin) ≥ f(
√
〈k〉).

According to (15), we have

Emax ≥ 2λmin(A)
e2tf λmin(A) − 1

= f(λmin) ≥ f(
√
〈k〉) =

2
√〈k〉

e2tf

√
〈k〉 − 1

.

For convenience in the following discussion, we let

Edegree
max −LB

=
2
√〈k〉

e2tf

√
〈k〉 − 1

. (18)

Theorem 4.2. Consider a simple connected network G = (V, E) with |V | = n,

adjacency matrix A(A = AT ). For any certain initial state x0 and any certain
target state xf , assume that the system can transform between x0 and xf in the
finite time [0, tf ]. Let the maximum degree of n vertices be dmax and the second
large degree be dsecond−max. When tf is big enough, it can be seen that

Emin ≥ 2dmax

e2tf dmax − 1
. (19)

More accurately, we have

Emin ≥ 2D

e2tf D − 1
, (20)

where D = dsecond−max−1+
√

(dsecond−max+1)2+4p(dmax−dsecond−max)

2 .

Proof. According to Lemma 4.2, we have

λmax = ρ(G) ≤ dmax.

Considering a function

f(x) =
2x

e2tf x − 1
x ∈ [λmax, dmax].

Taking the derivative of f(x), we have

f ′(x) =
2(1 − 2tfx)e2tf x − 2

(e2tf x − 1)2
x ∈ [λmax, dmax].

When tf is big enough, we have

f ′(x) < 0.

Then

f(λmax) ≥ f(dmax).
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Therefore

Emin ≥ 2λmax(A)
e2tf λmax(A) − 1

= f(λmax) ≥ f(dmax) =
2dmax

e2tf dmax − 1
.

According to Lemma 4.3, we have

λmax = ρ(G) ≤ D.

In a similar way, we can also prove

Emin ≥ 2D

e2tf D − 1
.

For convenience in the following discussion, we let

Edegree
min−LB =

2dmax

e2tf dmax − 1
. (21)

4.2. Numerical simulations and results analysis

According to Eqs. (18) and (21), Edegree
max −LB

and Edegree
min−LB as functions of the average

degree 〈k〉 (or maximum degree dmax) with different values of control time tf are
shown in Figs. 8(a) and 8(b). These two figures indicate that Edegree

max −LB
and Edegree

min−LB

are decreasing over the average degree 〈k〉 (or maximum degree dmax). Therefore,
we can claim that the control energy is negatively correlated with the degree of
nodes.

In order to validate our above claim, we simulate ER and BA networks and the
results are drawn in Figs. 9 and 10. Here A is the adjacency matrix, in which we
add self-loops as Aii =

∑n
i,j=1 Aij , and the input control signals directly to control

nodes from 1 to N(N = 1, 5, 10 and 20) in two networks. From these figures, we

(a) (b)

Fig. 8. These two subfigures indicate the relationship between the lower of control energy and the
degree of nodes. (a) Edegree

max−LB as a function of 〈k〉 with different values of tf and (b) Edegree
min−LB

as a function of dmax with different values of tf .
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(a) (b)

Fig. 9. These two subfigures indicate the relationship between the control energy (Emax and
Emin) and the degree (〈k〉 or dmax) of nodes in ER networks. Here A is the adjacency matrix,
in which we add self-loops as Aii =

Pn
i,j=1 Aij , and the input control signals directly to control

nodes from 1 to N(N = 1, 5, 10, 20). (a) Emax as a function of 〈k〉 with different control nodes
and (b) Emin as a function of dmax with different control nodes.

(a) (b)

Fig. 10. These two subfigures indicate the relationship between the control energy (Emax and
Emin) and the degree (〈k〉 or dmax) of nodes in BA networks. Here A is the adjacency matrix,
in which we add self-loops as Aii =

Pn
i,j=1 Aij , and the input control signals directly to control

nodes from 1 to N(N = 1, 5, 10, 20). (a) Emax as a function of 〈k〉 with different control nodes
and (b) Emin as a function of dmax with different control nodes.

can see that: (1) The maximal energy Emax of ER and BA networks is negatively
correlated with the average degree of nodes (Figs. 9(a) and 10(a)). (2) The minimal
energy Emin of ER and BA networks is negatively correlated with the maximum
degree of nodes (Figs. 9(b) and 10(b)). (3) For ER and BA networks, if the system
is completely controllable, the maximal and minimal energy costs are decreased
with an increase in the number of control nodes.
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5. The Control Strategy of Complex Networks

5.1. Sum of degree of control nodes determines the energy cost

In [15], the structural controllability of complex networks was converted into a
maximum matching problem on the network, i.e., we can gain complete control
over a directed network if and only if we directly control each unmatched node.
But there exists a large number of the maximum matchings in a complex network.
In other words, there are many different combinations of control nodes. We simulate
five networks, i.e., one simple network, two random networks (ER and BA) and two
realistic biological networks (Epithelial to Mesenchymal Transition (EMT) network
[31, 20] and p53-mediated DNA damage response network [31, 35]) to elucidate how
the sum of degree of control nodes affects the energy cost.

For a simple network with 6 nodes in Fig. 11(a), there are four different max-
imum matchings (Figs. 11(b)–11(e)), where A is the adjacency matrix. According
to Eq. (9), we calculate their maximal and minimal energies depicted in Figs. 12(a)
and 12(b), respectively, where A is the adjacency matrix. These results indicate that
the combination of control nodes with the higher sum of degree has the lower energy.

For ER and BA random networks with 100 nodes when A is the adjacency
matrix, in which we add self-loops as Aii =

∑n
i,j=1 Aij , they are easily controllable

(a) (b) (c)

(d) (e)

Fig. 11. (a) A simple network with 6 nodes and 6 interactions. (b–e) Four different maximum
matchings for this network with different sum of degree dsum.
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(a) (b)

Fig. 12. (a) The maximal energy evolves over control time tf for four different control node
combinations. (b) The minimal energy evolves over control time tf for four different control node
combinations.

(a) (b)

Fig. 13. (a) and (b) indicate the maximal energy evolves with control time tf for ER and BA
networks, respectively.

by anyone of nodes using the method proposed in [15]. We choose to control the
node with the maximum degree or the minimum degree, respectively. The results
show that the maximal energy with the maximum degree is lower than that with
the minimum degree for both of random networks (Figs. 13(a) and 13(b)) and
the minimal energy with the maximum degree is also lower than that with the
minimum degree for both of random networks (Figs. 14(a) and 14(b)), which are
also consistent with results that the energy cost is negatively correlated with the
degree of nodes shown in above section.

Furthermore, we explore the energy cost of two realistic biological networks:
one is EMT network and another is p53-mediated DNA damage response network
(Fig. 15). For these two networks, we obtain three different combinations of control
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(a) (b)

Fig. 14. (a) and (b) indicate the minimal energy evolves with control time tf for ER and BA
networks, respectively.

(a) (b)

Fig. 15. (a) The EMT network with 6 nodes (1. miR-203; 2. ZEB2; 3. SNAI1; 4. ZEB1; 5. miR-
200; 6. CDH1) and 15 interactions. (b) The p53-mediated cell damage response network with 17
molecules (1. ATM*; 2. p53; 3. Wip1; 4. Mdm2n; 5. p53arrester; 6. p53killer; 7. p53DINP1; 8.
Mdm2cp; 9. Akt*; 10. Mdm2c; 11. PIP3; 12. PTEN; 13. P21; 14. p53AIP1; 15. CytoC; 16. Casp3;
17. ATM2) and 40 interactions.

nodes. The sum of degree of all nodes in different combinations is different. In EMT
network, three different control sets are (1) ZEB2, miR-200, CDH1(dsum = 14); (2)
miR-203, ZEB1, miR-200(dsum = 15); (3) miR-203, ZEB2, miR-200(dsum = 16). In
the other network, three control sets are (1) p53killer, PTEN, P21, p53AIP1(dsum =
17); (2) Wip1, p53killer, PTEN, P21(dsum = 19); (3) Wip1, p53killer, p53DINP1,
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Fig. 16. The minimal energy evolves with control time tf for EMT network and p53-mediated
cell damage response network at three different combinations of control nodes.

Fig. 17. The maximal energy evolves with control time tf for EMT network and p53-mediated
cell damage response network at three different combinations of control nodes.

Casp3(dsum = 22). Figures 16 and 17 further confirm that combinations with higher
sum of degree of all nodes have lower maximal energy cost and minimal energy
cost.

All together, numerical simulations for five networks indicate that the combina-
tions with the greater sum of degree of control nodes need less energy to implement
complete control.

5.2. The multi-objective optimization model for realizing

the control with lower energy

The maximum matching problem can be treated by using the cavity method devel-
oped in statistical physics [15, 18, 19]. Consider a digraph G(V, E), in order to find
a maximum matching M , the goal is to find the minimum MG({s}) that satisfies
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the following condition of matching:∑
j∈∂+i

s(i→j) ≤ 1(i, j ∈ V ),
∑

k∈∂−i

s(k→i) ≤ 1(i, k ∈ V ),

where ∂− and ∂+ indicate the sets of nodes that point to i and are pointed by i,
respectively, MG({s}) =

∑
i∈V Mi({s}) =

∑
i∈V (1 −∑k∈∂−i s(k→i)), and s(i→j) ∈

{0, 1} assigned to each directed edge or arc (i → j) ∈ E with s(i→j) = 1 if (i →
j) ∈ M and s(i→j) = 0 otherwise.

Through above numerical simulations for random networks and biological net-
works, we have found that the greater sum of degree of control nodes is, the less
energy is required to implement complete control. Therefore, we consider setting up
a control strategy, which not only ensures the fewer control nodes, but also guar-
antees the less energy cost of control, can be converted into the following multi-
objective optimization problem:

min MG({s}) =
∑
i∈V

Mi({s}) =
∑
i∈V

(
1 −

∑
k∈∂−i

s(k→i)

)
,

max dG({s}) =
∑
i∈V

diMi({s}),

subject to




∑
j∈∂+i

s(i→j) ≤ 1(i, j ∈ V )

∑
k∈∂−i

s(k→i) ≤ 1(i, k ∈ V )

s(i→j) ∈ {0, 1}(i, j ∈ V )

s(i→j) = 0 if (i → j) /∈ E.

(22)

We convert this multi-objective optimization model into the following single
objective optimization:

min αMG({s}) − βdG({s})

subject to




α + β = 1, 0 ≤ α, β ≤ 1∑
j∈∂+i

s(i→j) ≤ 1(i, j ∈ V )

∑
k∈∂−i

s(k→i) ≤ 1(i, k ∈ V )

s(i→j) ∈ {0, 1}(i, j ∈ V )

s(i→j) = 0 if (i → j) /∈ E.

(23)

We use Lingo software to solve this problem. The results are listed in Table 1. From
Table 1, we can observe that the obtained combinations with greater sum of degree
need less energy cost of control.
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Table 1. The relationship among control nodes, the sum of the degree and energy cost for two

different biological networks (control time tf = 1).

EMT network p53 network

Different Control Control
weights nodes dsum In(Emin) In(Emax) nodes dsum In(Emin) In(Emax)

α = 1, β = 0 {1} 5 −1.70 37.41 {7, 12, 13} 7 −2.18 37.91
α = 0.9, β = 0.1 {3} 6 −2.44 35.21 {3, 7, 14} 11 −3.19 34.61
α = 0.8, β = 0.2 {2} 6 −1.92 35.95 {3, 7, 14} 11 −3.19 34.61

6. Conclusion and Discussion

In this study, we have explored the controllability of complex networks from
the energy perspective by quantifying with the maximal energy and the minimal
energy as measures of network controllability. The main contributions of our work
include. (1) By combining theoretical derivation and numerical simulations, we have
obtained lower bounds of the maximal and the minimal energy costs for an arbi-
trary network, which are related to their eigenvalues of state transition matrix. (2)
We deduce that controlling unstable networks is easier than controlling stable net-
works with the same size. (3) We have demonstrated a tradeoff between the control
energy and the average degree (or the maximum degree) of an arbitrary undirected
network. (4) Numerical simulations have showed that the energy cost has a negative
correlation with the degree of nodes. Moreover, the combinations of control nodes
with the greater sum of degree requires the less energy to achieve complete control.
(5) We have proposed a multi-objective optimization model to obtain the control
strategy, which not only ensures the fewer control nodes but also guarantees the
less energy cost of control.

There are some important aspects requiring further research, including (1) In
Theorem 4.1, we derived a tradeoff between the control energy and the average
degree of an arbitrary undirected network in the case that A is positive definite.
But we do not have a similar conclusion deduced for the case that A is not positive
definite, which needs to be further investigated. (2) In Sec. 5.1, numerical simu-
lations for five networks indicate that the combinations with the greater sum of
degree of control nodes need less energy to implement complete control, but we
have not deduced it theoretically, which also needs further investigation. (3) In
general, many realistic networks are nonlinear [9, 29], so the control of nonlinear
dynamical systems is an important topic in the future.
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