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Abstract. The control of complex nonlinear dynamical networks is an ongo-
ing challenge in diverse contexts ranging from biology to social sciences. To

explore a practical framework for controlling nonlinear dynamical networks

based on meaningful physical and experimental considerations, we propose a
new concept of the domain control for nonlinear dynamical networks, i.e., the

control of a nonlinear network in transition from the domain of attraction of an

undesired state (attractor) to the domain of attraction of a desired state. We
theoretically prove the existence of a domain control. In particular, we offer

an approach for identifying the driver nodes that need to be controlled and

design a general form of control functions for realizing domain controllability.
In addition, we demonstrate the effectiveness of our theory and approaches in

three realistic disease-related networks: the epithelial-mesenchymal transition
(EMT) core network, the T helper (Th) differentiation cellular network and

the cancer network. Moreover, we reveal certain genes that are critical to phe-

notype transitions of these systems. Therefore, the approach described here
not only offers a practical control scheme for nonlinear dynamical networks but

also helps the development of new strategies for the prevention and treatment

of complex diseases.

1. Introduction. The control of complex networks has attracted enormous atten-
tion in recent years because of its wide applications in a variety of natural, social,
economic, and man-made systems [36, 42, 11, 46]. Despite significant advances in ex-
ploring the controllability of complex networks [36, 65, 19, 62, 45, 54, 64, 35, 10, 55],
certain limitations remain. For example, most of the methods that have been de-
veloped are for the control of networks hypothetically governed by linear dynamics.
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A previous study showed that according to the control theory for linear systems, it
is necessary to directly control approximately 80% of the nodes to achieve complete
controllability in gene regulatory networks. However, such controls are usually infea-
sible and unnecessary because biological and medical experimental lines of evidence
show that one or few driver nodes should be enough, particularly when designing
drug targets in the biological and medical fields [36, 41, 62]. Therefore, the minimum
number of driver nodes in a linear dynamical system is often overestimated.

In the real world, dynamical processes on complex networks are generally nonlin-
ear. Therefore, the control of complex networked systems using nonlinear dynamics
must be considered [65, 7, 35, 10, 28, 57, 66]. Although the controllability of nonlin-
ear problems can be formulated using Lie brackets, such a control strategy is difficult
to implement if the system is large and complex [47]. Although some progresses
have been made in the development of specific control methods, such as chaos con-
trol [9], pinning control [49] and optimal control [52], these methods are limited
to low-dimensional systems or certain particular situations. A breakthrough in the
newly developed control approach is a realistic control framework, which can be used
to direct a network to a desirable state by identifying compensatory perturbations
[11]. A numerical and group representational framework has also been presented
to show the effect of symmetries on the controllability of nonlinear networks [61].
More recently, a highly scalable algorithm has been presented to rationally identify
parameter interventions that can control the response to noise in complex nonlinear
networks by modulating the heights of the barriers separating different stable steady
states [60]. In addition, the concept of the attractor network, in which the nodes
are the distinct attractors of the nonlinear system, has been recently introduced to
investigate the transitions between different attractors by applying parameter per-
turbations [56]. However, a general theoretical and computational framework for
the actual control of complex networks using nonlinear dynamics has not been de-
veloped yet. A general mathematical framework for controlling complex nonlinear
networks is difficult to define due to the complexity of the network structure as well
as the extremely diverse nonlinear dynamical behaviors of systems [30, 51]. There-
fore, the problem of controlling complex nonlinear dynamical networks remains an
outstanding challenge.

Indeed, many realistic networks, particularly networks representing pathogenesis
of complex diseases, may not require the detailed control of all state variables dur-
ing the transition from any initial state to any desired final state, which prompts
us to explore the development of a practical framework for controlling nonlinear
dynamical networks based on meaningful physical and experimental considerations.
A common feature of nonlinear dynamical systems is the emergence of a number of
distinct attractors [29, 51, 24, 25]. The performance and functions of the system
are often determined by a particular attractor. Because multiple types of stable
steady states (attractors) can occur, as has been observed in complex disease net-
works, such as cancer, tumor, and diabetes II, there are certain states that may
correspond to healthy (desirable) states under normal conditions and a few other
states that correspond to disease states or undesirable states [1, 5, 21, 12, 34, 33].
Potential curative interventions are those that can steer the system from a disease
or pre-disease state (i.e., domain of attraction of an undesirable state) to the domain
of attraction of the normal state [11, 1, 3].

Inspired by these biological problems, we propose a new concept for domain
control of a nonlinear dynamical network, i.e., a method that steers a nonlinear
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network from one domain of attraction to another domain of attraction. Our goal
is to develop a new mathematical theory and computational approach to realize
domain controllability. We then use several realistic networks to test our theory
and approaches. Notably, we reveal newly meaningful strategies for controlling the
fate of living cells. These results are an important step toward the realistic control
of complex networked systems with nonlinear dynamics.

2. Problem formulation. The dynamics of complex networks can often be rep-
resented by a set of nonlinear ordinary differential equations (ODEs). Without loss
of generality, we consider an n-node network whose n-dimensional dynamical state
y(t) is described as

ẏ(t) = F (y(t)), (1)

where F (y(t)) ∈ Rn is a nonlinear function, which is continuously differentiable
with respect to y. The corresponding nonlinear control system can be specified as

ẋ(t) = f(x(t), u(t)), (2)

where x(t) ∈ Rn is the state vector, u(t) ∈ Ω ⊆ Rm is the control signal, which is
continuous on the interval [t0, tf ], Ω is a compact convex set and f(x(t), u(t)) ∈ Rn
is continuously differentiable with respect to x and t. It should be noted that system
(2) is exactly system (1) when u = 0.

Throughout this paper we make the following assumptions.

Assumption 1. The nonlinear system (1) exhibits at least two distinct stable
steady states (attractors) x1

∗ and x2
∗ (x1

∗ 6= x2
∗), which indicates F (x*

1) =
F (x*

2) = 0. In addition, D1 and D2 are the domains of attraction for attractors x1
∗

and x2
∗, respectively.

Assumption 2. The function f(x, u) in (2) is Lipschitz continuous with respect
to x and u; thus, there exist two constants L1, L2 > 0 such that

‖f(x, u)− f(y, u)‖ ≤ L1 ‖x− y‖ ,∀x, y ∈ Rn, u ∈ Rm. (3)

‖f(x, u)− f(x, v)‖ ≤ L2 ‖u− v‖ ,∀x ∈ Rn, u, v ∈ Rm. (4)

Assumption 3. Nonlinear system (1) is dissipative, i.e., there exist large positive
constant C and time T such that ‖x(t)‖ ≤ C for any initial state x0 ∈ Rn and
t ≥ T. In other words, any solution of nonlinear system (1) eventually is bounded,
which is actually true for biological systems in practice.

Definition 2.1 (Domain controllability). The nonlinear system (2) is said to be
domain controllable for two different attraction domains D1 and D2 if for any state
x0 in the attraction domain D1, there exists a state x2 in the attraction domain D2,
a finite time tf and an admissible control defined on [t0, tf ] such that for x(t0) = x0,
we have x(tf ) = x2.

A schematic illustration of domain control is presented in Fig. 1. Our goal is
to develop a new theoretical and computational framework to quantify the domain
controllability of nonlinear dynamical networks and demonstrate the application
of domain controllability analysis to identify potential drug targets during disease
occurrence and progression. To address these problems, we consider the following
control system {

ẋ(t) = F (x(t)) +Bu(t),

x(t0) = x0, t ∈ [t0, tf ],
(5)
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Figure 1. A schematic illustration of the domain control. (A)
The nonlinear networked system can exhibit transitions between
the different stable steady states. The red solid, blue solid and
green dashed lines represent one stable steady state (attractor),
another stable steady (another attractor) state and unstable states,
respectively. The green dashed line with an arrow indicates the
transition from one attractor to another attractor. (B) and (C )
provide illustrations of the concept of domain control, namely the
transition from the domain of attraction of one attractor to the
domain of attraction of another attractor. (B) The domain of
attraction of one attractor (corresponding to the red solid line in
(A)). Each state in the domain of attraction is represented by
a red ball. The horizontal axis is a projected state-space and the
vertical axis is the potential, which indicates the relative instability
of individual states. (C ) The domain of attraction of another
attractor (corresponding to the blue solid line in (A)). Each state
in the domain of attraction is represented by a blue ball.

where x(t) ∈ Rn is the state vector, x0 is in the attraction domainD1 and B ∈ Rn×m
(m ≤ n) is the control input matrix in which each column is a n-by-1 identity matrix.
If the j-th column of matrix B is the i-th column of n-by-n identity matrix, it means
that an input control signal is directly acted on variable i.

3. Theoretical results. Without loss of generality, we assume that the first m
variables are selected and controlled, i.e., the sub-matrix consisting of the first m
rows of B is an identity matrix. For convenience to prove the following Theorem
3.1, we use the following notations.

x(t) =

[
X(t)
Y (t)

]
, F (x(t)) =

[
g(x(t))
h(x(t))

]
, x∗2 =

[
X∗

Y ∗

]
,

where

X(t) = (x1(t), · · · , xm(t))
T ∈ Rm, Y (t) = (xm+1(t), · · · , xn(t))

T ∈ Rn−m,

g(x) = (F1(x), · · · , Fm(x))
T ∈ Rm, h(x) = (Fm+1(x), · · · , Fn(x))

T ∈ Rn−m,
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X∗ = (X∗1 , · · · , X∗m)
T ∈ Rm, Y ∗ =

(
X∗m+1, · · · , X∗n

)T ∈ Rn−m.

Theorem 3.1. Suppose that Assumptions 1, 2 and 3 hold. Then the nonlinear
system (5) is domain controllable; that is, there exists a control function u(t) ∈
Ω ⊆ Rm(m ≤ n) such that the corresponding solution x(t) of system (5) satisfies

lim
t→+∞

‖x(t)− x∗2‖ = 0.

Proof. The proof includes two main steps. The first step is to determine the index
set of control variables (nodes) that include m variables and another is to design
the control u(t) and prove the system (5) can be controlled.

First, we describe how to determine the index set of control variables (nodes)
that include m variables.

Let K be an index set (possibly empty set) of variables. The purpose of K is
to screen out the variables whose partial derivatives are not constantly negative.
Specially, if there exists a time t and a state x(t) ∈ Rn such that the following
inequality

∂Fr(x(t))

∂xr
≥ 0 (6)

holds, then r ∈ K.
Let Q be an index set of variables containing q elements. We relabel the indexes

of variables of the system (5) such that Q = {1, · · · , q}, where q is the smallest
positive integer satisfying{

N(p) ⊆ C, for p = m+ 1,

N(p) ⊆ C
⋃
{m+ 1, · · · , p− 1} , for p ∈ {m+ 2, · · · , n} ,

(7)

where C = Q
⋃
K = {1, · · · ,m} is the index set of control variables (nodes), NC =

{m+ 1, · · · , n} is the index set of variables that do not need to be controlled and
N(p) is the index set of variables which are in the p-th equations of the system (5)
but exclude the index p.

It is obvious that m ≤ n.
Second, we can design the control signal as follows

u(t) = −g(x(t)) + λ(X(t)−X∗), (8)

where λ < 0. Assumption 3 implies uniform boundedness of x(t) for all t ≥ t0. This
implies uniform boundedness of u(t). Thus u(t) ∈ Ω ⊆ Rm.

Recall that the first m rows of B constitutes an identity matrix. Substituting
(8) into the nonlinear control system (5), we have

Ẋ(t) = λ(X(t)−X∗) , ḡ(x(t)), (9)

and

Ẏ (t) = h(x(t)). (10)

Let

F̄ (x(t)) =

[
ḡ(x(t))
h(x(t))

]
,
(
F̄1(x), · · · , F̄n(x)

)T ∈ Rn. (11)

(9) implies

lim
t→+∞

xc(t) = X∗c , for all c ∈ C, (12)

and
∂F̄l(x(t))

∂xl
< 0, 1 ≤ l ≤ m. (13)
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Recall that Assumption 3 holds and that F (x(t)) is continuous. Combining (9),
(11) and the definition of K, we have

∂F̄l(x(t))

∂xl
< 0, m+ 1 ≤ l ≤ n. (14)

Combining (13) and (14) gives

∂F̄l(x(t))

∂xl
< 0, 1 ≤ l ≤ n. (15)

Similar to Fiedler et al. [17], we use the mathematical induction method to prove

lim
t→+∞

xi(t) = X∗i , 1 ≤ i ≤ n. (16)

First, the statement given in (16) obviously holds when i = 1. Second, we assume
that (16) holds for all i < k. At last, we will show that (16) also holds when i = k.

Let

ϕ(t) = x(t)− x∗2,
where ϕ(t) = (ϕ1(t), · · · , ϕn(t))

T ∈ Rn.
According to the generalized mean value theorem, we have

ϕ̇k(t) = F̄k(x(t))− F̄k(X∗k)

=

n∑
j=1

(∫ 1

0

∂F̄k
∂xj

(x(t)− θϕ(t)) dθ

)
ϕj(t).

(17)

(17) can be rewritten as

ϕ̇k(t) = αk(t)ϕk(t) +
∑

j∈N(k)

βj(t)ϕj(t), (18)

where

αk(t) =

∫ 1

0

(
∂F̄k
∂xk

(x(t)− θϕ(t))

)
dθ,

βj(t) =

∫ 1

0

∂F̄k
∂xj

(x(t)− θϕ(t)) dθ, j ∈ N(k).

Assumption 3 implies uniform boundedness of x(t), and x(t)−θϕ(t) for all t ≥ T.
Since F̄ (x) is continuously differentiable with respect to x, then ∂F̄k

∂xj
(x(t)− θϕ(t))

is uniform bounded for a given j. This implies uniform boundedness of βj(t) based
on the Property 6 of Integrals in [50]. Recall that (15) holds, according to the
Property 5 of Integrals in [50], then αk(t) < 0 for all t ≥ t0. Thus, for all t ≥ T ,
there exist constant α0 and β0 such that

αk(t) ≤ α0 < 0,

|βj(t)| ≤ β0.
(19)

Using the variation of constants method, the solution of (18) can be written as

ϕk (t) = ϕk (t0) exp

(∫ t

t0

αk (s) ds

)
+

∑
j∈N(k)

∫ t

t0

(
exp

(∫ t

s

αk (r) dr

)
βj (s)ϕj (s)

)
ds.

(20)
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Combining (19) and (20) yields

|ϕk (t)| ≤ |ϕk (t0)| exp

(∫ t

t0

αk (s) ds

)
+

∑
j∈N(k)

∫ t

t0

(
exp

(∫ t

s

αk (r) dr

)
|βj (s)| |ϕj (s)|

)
ds

≤ |ϕk (t0)| eα0(t−t0) +
∑

j∈N(k)

∫ t

t0

(
β0e

α0(t−s) |ϕj (s)|
)
ds.

(21)

Obviously, lim
t→+∞

|ϕk (t0)| eα0(t−t0) = 0. The integral terms on the right hand of

(21) can be rewritten as∫ t

t0

(
β0e

α0(t−s) |ϕj (s)|
)
ds = β0

∫ t−t0

0

eα0s |ϕj (t− s)| ds, j ∈ N (k) . (22)

According to the induction hypothesis, we have lim
t→+∞

ϕj (t− s) = 0 for all j ∈
N (k) ⊆ C

⋃
{m+ 1, · · · , k − 1} . Thus, eα0s |ϕj (t− s)| is bounded for a given s.

Using the Lebesgue’s dominated convergence theorem [38], we have

lim
t→+∞

∫ t−t0

0

eα0s |ϕj (t− s)| ds = 0. (23)

Thus lim
t→+∞

|ϕk (t)| = 0, i.e., lim
t→+∞

xk(t) = X∗k .

Remark 1. There are two fundamental questions in the control of nonlinear dy-
namical networks, that is, how to identify driver nodes and design the control signals
to achieve the control goal for a dynamical system. In the proof of Theorem 3.1, we
established a strategy for identifying the driver nodes that are theoretically required
to ensure the system domain controllable. Algorithm 1 presents detailed steps for
identifying the theoretically required nodes (section 4.1.1). In addition, we also
designed a general form of control functions (8) that depend on the dynamics and
the desired state of the system for realizing domain controllability.

Remark 2. According to our theory and approaches, it is easy to find that the
number of driver nodes is much less than the number of nodes for biochemical
networks, i.e., m � n. On the one hand, biochemical processes take place usually
involving the degradation of molecules (e.g., genes and proteins). Thus, degradation
terms (e.g., −di · xi) generally appear in the mathematical models of biochemical
networks, suggesting that the partial derivative of Fi with respect to xi is usually
negative; that is, K is an empty set based on (6). On the other hand, signaling
networks are characterized by their upstream and downstream signaling pathways
and cascade to shape a uniquely defined response to the initial stimulus [26, 43].
Thus, based on the method of determining the set Q, we can control the dynamics of
the system as long as we control these extracellular signaling molecules in signaling
networks. Altogether, the number m of the control set C = Q

⋃
K may be much

smaller than the number n of nodes in the node set of biochemical networks.

Remark 3. In biological models, the set K has obvious biological meanings. If
there are not any self-feedbacks in all variables, then the set K is empty. Otherwise,
the variables that have self-feedbacks will be selected into the set K when (6) holds.
For a real biological system, very few variables have self-feedbacks. In Appendix A,
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we give two simple but famous biological examples to explain how to obtain the set
K and show the biological significance of the selected set K.

Remark 4. The set Q can be determined according to (7). The main idea of
determining the set Q is that a set of variables are selected such that the dynamical
equations of all of the remaining variables can be expressed as explicit functions
of these selected variables by successive evaluation of their dynamical equations.
According to (7), when p = m + 1, N(m + 1) ⊆ C means the (m + 1)-th equation
only contains the variables in the control set C. In other words, the (m + 1)-th
equation can be expressed as an explicit function of the controlled variables. When
p = m+2, N(m+2) ⊆ C

⋃
{m+1} means the (m+2)-th equation only contains the

variables in the control set C and the variable xm+1, suggesting that the (m + 2)-
th equation can be expressed as an explicit function of the controlled variables
and the variable xm+1. Therefore, the (m + 2)-th equation can also be expressed
as an explicit function of the controlled variables. By this analogy, when p = n,
N(n) ⊆ C

⋃
{m + 1, · · · , n − 1} means that the (n)-th equation only contains the

variables in the control set C and the variables {xm+1, xm+2, · · · , xn−1}. Therefore,
the dynamical equations of all of the remaining variables can be expressed as explicit
functions of these controlled variables. To clearly show the relationships between
the controlled variables and the remaining variables, we give a schematic diagram
in Fig. A3. In addition, to further illustrate the definition of the set Q, two simple
examples are given in Appendix A.

Remark 5. Because Theorem 3.1 provides a sufficient condition for the domain
controllability of a system, the number of the calculated driver nodes based on this
Theorem may be overestimated. Therefore, we numerically investigate whether a
less number of driver nodes can also achieve domain controllability (section 4.1.2).
To distinguish the differences of these two approaches, we denote them as theoreti-
cally and practically required driver nodes, respectively.

4. Algorithms for solving the domain control problem.

4.1. Identifying driver nodes for realizing domain controllability.

4.1.1. Theoretically required driver nodes. In the proof of the Theorem 3.1, we es-
tablished a strategy for identifying the driver nodes that theoretically need to be
controlled. The set of driver nodes equals the union of the sets K and Q, which
can be determined using (6) and (7), respectively. Here, we gave an intuitive ex-
planation and a simple algorithm of how to select the driver nodes. Firstly, we
ignored the variables that are not influenced by any other variables. The dynamics
of these variables converges to the stable steady states and does not contribute to
the diversity of attractors of the system. We inductively repeated this procedure
until there was no such variables. Secondly, the main idea of determining the set
Q is that a set of variables was selected such that the dynamical equations of all
of the remaining variables can be expressed as explicit functions of these selected
variables by successive evaluation of their dynamical equations. Therefore, if we
appropriately control the dynamics of these selected variables, we can drive the sys-
tem to the domain of attraction of the desired attractor. Thirdly, the minimal set of
such selected variables is exactly the set Q in our proof. In this study, we employed
an exhaustive algorithm to search the set Q. More specifically, we presented the
following algorithm to identify the theoretically required driver nodes.
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Algorithm 1 Identifying the theoretically required driver nodes

Step 1. Determine the set K according to (6).
Step 2. Ignore the variables that do not be influenced by any other variables as

described above.
Step 3. Select a subset of variables, denoted by Q.
Step 4. If the dynamical equations of all of the remaining variables can be only

expressed as explicit functions of the variables in Q, then stop the iteration
and return C = Q

⋃
K as the set of driver nodes. Otherwise, go to the

next step.
Step 5. Repeat Steps 3 and 4 using the exhaustive search of the candidate set by

looking first at smaller sets.

4.1.2. Practically required driver nodes. The Algorithm 1 for identifying the theo-
retically required driver nodes is based on the proposed method for finding the set
C = Q

⋃
K of driver nodes in the proof of Theorem 3.1. The purpose is to demon-

strate the correctness of our theory. However, the purpose for finding practically
required driver nodes is to investigate whether a less number of driver nodes can al-
so achieve domain controllability because the targets are very few in biological and
medical networks. Therefore, the computational method for practically required
driver nodes is very simple. That is, we select one node from the set of theoretically
required driver nodes and use the designed control function (8), then perform the
numerical simulation to determine whether the trajectory of the control system (5)
can dynamically evolve to the desirable attractor using the designed control error
(24). If the system cannot be controlled by controlling one node, then we select two
nodes from the set of theoretically required driver nodes and repeat the simulations,
and so on. In addition, for low-dimensional problems, we also test each variable
(node) in the dynamical system to observe its domain controllability.

4.2. Determining the attractors of a nonlinear dynamical system. In this
study, we combine the Runge-Kutta method and trust-region method to determine
the attractors (steady states) of an n-dimensional nonlinear dynamical system such
as that given in (1). It is impossible to enumerate all of the possible attractors of
a high-dimensional nonlinear dynamical system, but we can confirm the minimum
number of attractors by performing many rounds of sufficient sampling. The algo-
rithm for determining the steady states of the nonlinear dynamical system (1) was
presented in Algorithm 2.

4.3. Finding the domains of attraction. In this study, we estimate the domains
of attraction using the Latin hypercube sampling (LHS) method. As biological
systems are often bounded, to measure the domains of attraction more accurately,
we find the domains of attraction in the positively invariant set of a dynamical
system. A positively invariant set ∆ is a subset of the state space of a dynamical
system with the property that, if any solution to the dynamical system with initial
conditions x(0) ∈ ∆ satisfies x(t) ∈ ∆ when t ≥ 0. The procedure is presented in
Algorithm 3.

5. Numerical illustrations and biological implications. In this section, we
numerically illustrate the effectiveness of our proposed theoretical and computa-
tional frameworks as well as their biological implications. Network controllability
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Algorithm 2 Determining the attractors of the nonlinear dynamical system

Step 1. Let P and A be the phase space and the set of attractors of the dynamical
model (1), respectively. Given the total number of iterations N , termina-
tion tolerance ε, set iteration i = 1 and A = Ø.

Step 2. Randomly generate an initial state xi0 ∈ P. Integrate system in (1) over
a long time using the classical fourth-order Runge-Kutta method and let
xi(tf ) be the solution xi evaluated at the terminal time point tf .

Step 3. Start at the point xi(tf ) and again try to solve the nonlinear equations
F (x) = 0 using the trust-region method, which return the solution of the
nonlinear equation, again denoted by xi.

Step 4. Update A =
{
xi, A

}
if xi satisfies the following criterion∥∥F (xi)− 0

∥∥ < ε.

Step 5. If i < N, update i = i+ 1 and return to Step 2.

Algorithm 3 Finding the domains of attraction

Step 1. Let D be the domain of attraction of an attractor (denoted by x∗) of the
dynamical model (1). Given the total number of iterations N , termination
tolerance ε, set iteration i = 1 and D = Ø.

Step 2. Randomly generate a sample point xi0 ∈ ∆. Integrate system in (1) over
a long time by taking xi0 as the initial state and let xi(tf ) be the solution
xi evaluated at the terminal time point tf .

Step 3. Start at the point xi(tf ) and again try to solve the nonlinear equations
F (x) = 0 using the trust-region method, which return the solution of the
nonlinear equation, again denoted by xi.

Step 4. Update D =
{
xi0, D

}
if xi satisfies the following criterion∥∥xi − x∗∥∥ < ε.

Step 5. If i < N, update i = i+ 1 and return to Step 2.

analysis has recently emerged as powerful tools for the identification of potential
drug targets of complex diseases [63, 53]. The identification of critical genes during
disease progression is providing new insights into the transitions of cellular pheno-
types and possible therapeutic interventions. To demonstrate effectiveness of using
domain controllability analysis as a general tool to discover novel disease genes and
potential drug targets, we apply our proposed approach to three realistic disease-
related networks: the epithelial-mesenchymal transition (EMT) core network [40],
the T helper (Th) differentiation cellular network [38] and the cancer network [32].

We use the root-mean-square error (RMSE) to measure the quality of the domain
control process. The control error between the control trajectory and the desired
attractor at time t is defined as

e(t) =

√√√√ 1

n

n∑
i=1

(xi(t)− x∗2i)
2
, (24)

where xi(t) and x∗2i is the i-th component of the state vector of the control system
(5) and the desired attractor, respectively. n is the dimension of the system (1).

5.1. Domain control of the EMT core network. In this paper, we first used
a simple EMT core network, as shown in Fig. 2A, to illustrate the effectiveness of
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Figure 2. The EMT core network and domain control strategies
for its phenotype transition. (A) Diagram (redrawn from [40]) of
the EMT core network. The arrows and short bars represent acti-
vation and inhibition, respectively. For example, SNAI1 activates
ZEB1 but inhibits miR-203 expression. (B) The practically re-
quired driver nodes (genes) for realizing domain controllability of
this network. Mesenchymal cells can be induced from epithelial
cells and back by any one of the four genes (SNAI1, ZEB1, ZEB2
and miR-203) and any one of the two genes (SNAI1 and miR-203),
respectively.

our theory and the power of domain controllability analysis in identifying key genes
that control the initiation and progression of EMT.

Based on the law of mass action and Michaelis-Menten kinetics, we built an ODE
model of this network. The associated dynamics follows

ẋ1 =
1

1 +K12x2
2 +K13x2

3 +K14x2
4

− d1x1,

ẋ2 =
1

1 +K26x2
6

− d2x2,

ẋ3 =
x2

2

1 +K32x2
2 +K35x2

5

− d3x3, (25)

ẋ4 =
x2

2

1 +K42x2
2 +K45x2

5 +K46x2
6

− d4x4,

ẋ5 =
1

1 +K52x2
2 +K53x2

3 +K54x2
4

− d5x5,

ẋ6 =
1

1 +K62x2
2 +K63x2

3 +K64x2
4

− d6x6,

where xi(i = 1, 2, 3, 4, 5, 6) represents the activity level of CDH1, SNAI1, ZEB1,
ZEB2, miR-200 and miR-203, respectively. Kij denotes the regulatory strength
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from node j to i and di is the degradation rate of gene i. The parameters used to
perform numerical simulations are in the following: Kij = 1, d1 = 0.5, d2 = 0.3, d3 =
0.5, d4 = 0.5, d5 = 0.5, d6 = 0.3.

As a preparation, we first employed Algorithm 2 to identify the attractors of this
model. As shown in Table 1, we confirmed the existence of two attractors in this
network, which correspond to the epithelial and mesenchymal states. This result
is consistent with previous findings [40]. Second, to find the domains of attraction
of this model, we give the positively invariant set of this model, as shown in Table
2. Applying Algorithm 3 to this model, we uniformly took 10,000 samples (N =
10, 000) from the positively invariant set and obtained the domains of attraction.
Because it is impossible to show domains of attraction in high dimensional space,
we projected the domains onto two-dimensional planes. The domains of attraction
of this model are depicted in Fig. C1(see Appendix C).

Table 1. The attractors of the EMT network. The two observed
attractors A and B correspond to the epithelial state and mes-
enchymal state [40], respectively.

A B A B

x1 (CDH1) 1.7924 0.1111 x4 (ZEB2) 0.0170 1.8169
x2 (SNAI1) 0.3359 3.2229 x5 (miR-200) 1.7924 0.1111
x3 (ZEB1) 0.0522 1.8224 x6 (miR-203) 2.9873 0.1851

Table 2. The positively invariant sets of the mathematical models
of the three disease-related networks.

Networks Positively invariant sets

EMT
{

(x1, · · · , x6) ∈ R6
∣∣∣0 < xi <

1
di
, i = 1, · · · , 6

}

T helper


x ∈ R23

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 ≤ x5 <
1

d4d5
, 0 ≤ x6 <

1

d1d6
, 0 ≤ x7 <

1

d1d6d7
, 0 ≤ x14 <

1

d11d14
,

0 ≤ x17 < ((
1

d3
+

1

d15
)

1

d18
+

1

d22
)

1

d17
, 0 ≤ x18 < (

1

d3
+

1

d15
)

1

d18
,

0 ≤ x19 <
1

d1d6d7d19
, 0 ≤ x20 <

1

d9d20
, 0 ≤ x21 <

1

d13d21
,

0 ≤ xi <
1

di
, 0 ≤ xj < 1, i = 1, 3, 4, 9, 11, 12, 13, 15, 16, j = 8, 10, 23


Cancer

{
(x1, · · · , x32) ∈ R32 |0 ≤ xi ≤ 1, i = 1, · · · , 32

}
We take this network as an example to describe how to identify the driver nodes

using our established strategy (section 4.1.1). First, based on the dynamical equa-
tions of this network (25), it is clear that there does not exist an index of a variable
satisfying (6), i.e., K is an empty set. Second, we rewrote the dynamical equations
(25) as the following form:

ẋ1 = G1(x2, x3, x4)−D1(x1),

ẋ2 = G2(x6)−D2(x2),

ẋ3 = G3(x2, x5)−D3(x3),

ẋ4 = G4(x2, x5, x6)−D4(x4),

ẋ5 = G5(x2, x3, x4)−D5(x5),

ẋ6 = G6(x2, x3, x4)−D6(x6),

(26)
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where Gi(xj) and Di(xi) indicate the terms related to other variables (j 6= i) and it-
self (xi) in the i-th equation, respectively. By successive evaluation of the dynamical
equations, we obtained the following equivalent system:



ẋ1 = G1(G2(x6), G3(G2(x6), x5), G4(G2(x6), x5, x6))−D1(x1),

ẋ2 = G2(x6)−D2(x2),

ẋ3 = G3(G2(x6), x5)−D3(x3),

ẋ4 = G4(G2(x6), x5, x6)−D4(x4),

ẋ5 = G5(x2, x3, x4)−D5(x5),

ẋ6 = G6(x2, x3, x4)−D6(x6),

(27)

As shown in (27), the dynamical equations of the remaining variables (i.e.,
x1, x2, x3, x4) are explicit functions of selected variables (i.e., x5, x6). Therefore,
the dynamics of the remaining variables is determined uniquely by that of the s-
elected variables, suggesting that the control of x5 and x6 can indeed steer the
system (25) to evolve to the desired attractor. In addition, according to (26), it can
easily be shown that N(2) = {6} ⊆ {5, 6} , N(3) = {2, 5} ⊆ {5, 6}

⋃
{2}, N(4) =

{2, 5, 6} ⊆ {5, 6}
⋃
{2}, N(1) = {2, 3, 4} ⊆ {5, 6}

⋃
{2, 3, 4}. Recall that K is an

empty set. Therefore, we can set Q = {5, 6} . Accordingly, C = Q
⋃
K = {5, 6} .

Finally, we relabel the variables in accordance with the order {x5, x6, x2, x3, x4, x1},
then (7) holds.

The above analysis indicates that we can drive epithelial cells to transition into
mesenchymal cells and back by controlling two genes, i.e., miR-200 (x5) and miR-
203 (x6). Based on the designed control function (8), we can obtain the control
function for the theoretically required driver nodes (i.e., miR-200 and miR-203),
which is presented in Table 3. Based on this control function, we simulated the
dynamics while controlling these two genes. The node state trajectories x(t), the
control function u(t) and the control error e(t) are depicted in Fig. C2 (see Appendix
C), which indicates that the control errors remained very small (e(t) < 10−3) with
the time evolution, suggesting that our approach accurately controls the network
dynamics. Furthermore, we randomly selected 10,000 points from the domain of
attraction of the undesirable state and found that 100% control eventually caused
the network to evolve to the desired target state using our method.

To show how the parameter λ in our designed control function influences the
control process, we perform numerical simulations by changing the value of λ. Fig.
C3 (see Appendix C) shows that a higher absolute value of λ indicates a less time the
system takes to evolve to the desirable attractor. However, there is no significant
influence when the absolute value of λ is larger than a certain value. When we
perform numerical simulations for the three disease-related networks, the parameter
λ is set to be −0.2.

To identify the practically required driver nodes (section 4.1.2), we tested each of
the six nodes and found that controlling any one of the four genes (SNAI1, ZEB1,
ZEB2 and miR-203) can drive the system to switch from the epithelial state to
the mesenchymal state, and controlling any one of the two genes (SNAI1 and miR-
203) can drive the system to transition back. Fig. 2B summarizes the practically
required driver nodes (genes) for inducing transitions between the epithelial and
mesenchymal states. Given an initial point in the domain of attraction of the
epithelial state, we simulated the dynamics while controlling a single node. Based
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Table 3. The theoretically required driver nodes and designed
control functions for realizing domain control of the three disease-
related networks. x∗2,i is the i-th component of the state vector of
the desired attractor.
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Table 4. An example of the practically required driver nodes and
designed control functions for realizing domain control of the three
disease-related networks. x∗2,i is the i-th component of the state
vector of the desired attractor.

Transitions Drivers Control functions (u(t))

E↔M miR-203 −
(

1
1+K62x

2
2+K63x

2
3+K64x

2
4
− d6x6

)
+ λ

(
x6 − x∗2,6

)
Th0↔Th1 T-bet −

(
k22−18x18+k22−22x22

1+k22−1x1+k22−22x22+k22−18x18
− d22x22

)
+ λ

(
x22 − x∗2,22

)
Th0↔Th2 GATA-3 −

(
k1−1x1+k1−21x21

1+k1−1x1+k1−21x21+k1−22x22
− d1x1

)
+ λ

(
x1 − x∗2,1

)
C↔A AKT −

(
a(s11x11

n+s12x12
n+s13x13

n)
3Sn+s11x11

n+s12x12
n+s13x13

n + bSn

Sn+s4x4
n − kx10

)
+ λ

(
x10 − x∗2,10

)
C↔N RB −

(
4bSn

2Sn+s17x17
n+s18x18

n − kx6
)

+ λ
(
x6 − x∗2,6

)
A↔N NFκB −

(
a(s10x10

n+s13x13
n)

2Sn+s10x10
n+s13x13

n + bSn

Sn+s4x4
n − kx25

)
+ λ

(
x25 − x∗2,25

)

Figure 3. Domain control of the EMT core network transition
from the epithelial state to the mesenchymal state. The repre-
sentative node state trajectories x(t) (A-B), control function u(t)
(C ) and control error e(t) (D) are depicted when the practically
required driver node, namely miR-203, is controlled. The symbols
x2 and x6 indicate the activities of SNAI1 and miR-203, respec-
tively. The black dashed and blue solid lines represent the initial
epithelial state (i.e., the undesired state with no control) and de-
sired mesenchymal state, respectively.

on the designed control function (8), we can also obtain the control function for
the practically required driver nodes (e.g., miR-203), which is presented in Table
4. Based on this designed control function, Fig. 3 shows the results obtained while
controlling node miR-203 and the corresponding time evolution of the genes and
the control function. The control error results show that we were able to accurately
steer the system from the epithelial state to the mesenchymal state. We observed
that we could drive the network to the desired state by controlling any one of the
three genes SNAI1, ZEB1 and miR-203, which is in line with the previous findings
that these genes are important regulators in the EMT [40, 31], suggesting a potential
application of our approach to uncover key genes in the EMT program.
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Figure 4. The Th differentiation cellular network and domain
control strategies for its phenotype transition. (A) Diagram (re-
drawn from the reference [38]) of the Th differentiation cellular
network. (B) The practically required driver nodes (genes) for re-
alizing domain controllability of this network. Th1 and Th2 cells
can be induced from Th0 cells by any one of the five genes (T-bet,
IFN-γ, IFN-γR, JAK1 and STAT1) and any one of the four genes
(GATA-3, IL-4, IL-4R and STAT6), respectively.

5.2. Domain control of the Th differentiation cellular network. Next, we
applied our proposed theoretical and computational frameworks to a core regula-
tory network controlling the differentiation of Th cells, which consists of 23 nodes
(Fig. 4). Starting with the discrete model presented in a previous study [16], we
constructed an ODE model (see (B1) in Appendix B). Applying Algorithm 2 to
this model, numerical simulations show that there are three attractors, which cor-
respond to the Th0, Th1 and Th2 phenotypes (Table 5). The patterns of activity
of these attractors are qualitatively consistent with those identified in a previous
study [16]. In addition, we obtained the corresponding domains of attraction by
using Algorithm 3, which are shown in Fig. C4 (see Appendix C).

Applying our theory to the Th differentiation cellular network leads to the find-
ings that controlling two genes (GATA-3 and STAT1) can force the system to per-
form transitions among the three phenotypes in the Th differentiation process. The
designed control function for these two genes was shown in Table 3. Furthermore,
a single driver node (T-bet, IFN-γ, IFN-γR, JAK1 or STAT1) was observed when
attempting to identify the practically required driver nodes of this network for the
transition from Th0 to Th1, and another driver node (GATA-3, IL-4, IL-4R or S-
TAT6) was identified for the transitions from Th0 to Th2 and Th1 to Th2. Fig. 4B
summarizes the practically required driver nodes needed to achieve domain control
of the transitions from Th0 state to the Th1 and Th2 states. Using the designed
control function (Table 4), Fig. 5 shows that the control of one of the two driver
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Table 5. The attractors of the Th differentiation cellular network.
The three observed attractors (A, B and C) correspond to the Th0,
Th1 and Th2 phenotypes [16], respectively.

A B C A B C

x1 (GATA-3) 0.0000 0.0000 2.0238 x13 (IL-4R) 0.0000 0.0000 1.3358
x2 (IFN-β) 0.0000 0.0000 0.0000 x14 (IRAK) 0.0000 0.0000 0.0000
x3 (IFN-βR) 0.0000 0.0000 0.0000 x15 (JAK1) 0.0000 0.4406 0.0000
x4 (IFN-γ) 0.0000 2.1012 0.0000 x16 (NFAT) 0.0000 0.0000 0.0000
x5 (IFN-γR) 0.0000 2.1012 0.0000 x17 (SOCS1) 0.0000 2.1459 0.0000
x6 (IL-10) 0.0000 0.0000 2.0238 x18 (STAT1) 0.0000 0.4406 0.0000
x7 (IL-10R) 0.0000 0.0000 2.0238 x19 (STAT3) 0.0000 0.0000 2.0238
x8 (IL-12) 0.0000 0.0000 0.0000 x20 (STAT4) 0.0000 0.0000 0.0000
x9 (IL-12R) 0.0000 0.0000 0.0000 x21 (STAT6) 0.0000 0.0000 2.2264
x10 (IL-18) 0.0000 0.0000 0.0000 x22 (T-bet) 0.0000 1.7053 0.0000
x11 (IL-18R) 0.0000 0.0000 0.0000 x23 (TCR) 0.0000 0.0000 0.0000
x12 (IL-4) 0.0000 0.0000 2.0094

Figure 5. Domain control of the Th differentiation cellular net-
work transitions from Th0 to Th1 and Th2. The representative
node state trajectories x(t) (A, B), control function u(t) (C ) and
control error e(t) (D) are depicted. The symbols x1 and x22 indi-
cate the activities of GATA-3 and T-bet, respectively. The black
dashed line indicates the Th0 phenotype, i.e., the initial state with
no control. The red line with circle markers and blue line with
square markers represent transitions from Th0 to Th1 and Th0 to
Th2, respectively. The driver node is T-bet when Th0 is steered to
the Th1 phenotype (Th0→Th1) and GATA-3 when Th0 is driven
to the Th2 phenotype (Th0→ Th2).

nodes, T-bet and GATA-3, can indeed steer a cell’s differentiation from Th0 to
either Th1 or Th2. The simulation results for the transition from Th1 to Th2 when
controlling GATA-3 are shown in Fig. C5 (see Appendix C). These findings are
consistent with the experimental results that stimulating the system with either T-
bet or IFN-γ results in differentiations from Th0 to Th1, and with either GATA-3
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Figure 6. Diagram of the cancer network. This network is re-
drawn from the reference [32], including 32 nodes (genes) and 111
edges (66 activation interactions and 45 repression interactions).
The network mainly includes four types of marker genes: apop-
tosis marker genes (green rectangles), cancer marker genes (red
rectangles), tumor repressor genes (light blue rectangles) and oth-
er genes (blue rectangles).The red arrows represent activation and
the green short bars represent repression.

or IL-4 leads to differentiations from Th0 to Th2 [38, 22, 23]. These results suggest
that the driver genes revealed by domain controllability analysis may play a vital
role in the transitions among these three phenotypes during the Th differentiation
process.

5.3. Domain control of the cancer network. Finally, we applied our proposed
theoretical and computational frameworks to a cancer gene regulatory network, as
shown in Fig. 6. The corresponding ODEs describing the dynamics of the under-
lying system were constructed in a previous study [32]. This system describes the
expression level of 32 genes (nodes) and 111 regulations (edges) ((B2) in Appen-
dix B). Applying algorithm 2 to the constructed mathematical model, we observed
three attractors characterizing three important biological states: normal, cancer
and apoptosis (Table 6). In addition, we obtained the corresponding domains of
attraction by using Algorithm 3, which are depicted in Fig. C6 (see Appendix C).

Table 6: The attractors of the cancer network. The three observed
attractors (A, B and C) correspond to the apoptosis, normal and cancer
states [32], respectively.

A B C A B C
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x1 (ATM) 0.4165 0.4277 0.4712 x17 (CDK2) 0.1336 0.4613 0.8022
x2 (P53) 0.4668 0.4642 0.4545 x18 (CDK4) 0.1342 0.4273 0.8620
x3 (P21) 0.5700 0.4511 0.4378 x19 (CDK1) 0.5788 0.4853 0.5550
x4 (PTEN) 0.7438 0.2973 0.2836 x20 (E2F1) 0.1922 0.2620 0.3441
x5 (CDH1) 0.3215 0.6263 0.5298 x21 (Caspase) 0.8766 0.0688 0.0621
x6 (RB) 0.9970 0.7105 0.1921 x22 (BAX) 0.7159 0.2641 0.2498
x7 (ARF) 0.2756 0.2645 0.3087 x23 (BAD) 0.8486 0.1024 0.0923
x8 (AR) 0.4134 0.2439 0.1955 x24 (BCL2) 0.1740 0.7533 0.7705
x9 (MYC) 0.6647 0.4760 0.4758 x25 (NFκB) 0.1433 0.8853 0.9007
x10 (AKT) 0.3044 0.8058 0.8294 x26 (RAS) 0.4089 0.5158 0.5427
x11 (EGFR) 0.5262 0.4606 0.4636 x27 (TGFα) 0.0000 0.0000 0.0000
x12 (VEGF) 0.4145 0.6239 0.6464 x28 (TNFα) 0.0000 0.0000 0.0000
x13 (HGF) 0.1484 0.5908 0.6214 x29 (TGFβ) 0.0806 0.6772 0.7016
x14 (HIF1) 0.2998 0.6632 0.6823 x30 (Wee1) 0.6282 0.4550 0.5882
x15 (hTERT) 0.3765 0.4680 0.4702 x31 (MdmX) 0.6915 0.8148 0.6413
x16 (MDM2) 0.2471 0.4911 0.7550 x32 (Wip1) 0.4933 0.4877 0.4666

By applying the strategy for identifying the theoretically required driver nodes
(Algorithm 1) to the cancer network, we revealed that control of the nine genes
(e.g., P53, RB, AKT, EGFR, HIF1, CDK2, CDK1, BCL2 and NFκB) is sufficient
to induce transitions among the cancer, normal and apoptosis states. The designed
control function for these genes was shown in Table 3.

Furthermore, we tried to identify the practically required driver nodes for induc-
ing transition from one domain of attraction to another in this network (section
4.1.2). Strikingly, a single driver node, such as RB (a tumor suppressor gene) and
CDK2 (an oncogene), was detected by the application of our designed control func-
tion ((8) and Table 4) to this network for induction of the transition from the cancer
to normal states, and another driver node, such as AKT (an oncogenes), PTEN (a
tumor suppressor gene) and NFκB, was observed to cause the transitions from the
cancer to apoptosis states. Given an initial point in the domain of attraction of the
cancer state, we simulated the dynamics when one of the two genes AKT and RB
was controlled. Fig. 7 shows the time evolution of the key genes and the control
functions. The control errors show that we can accurately steer the system to switch
from the cancer state to the apoptosis state and the normal state by controlling one
of these genes, respectively.

Moreover, our study also revealed that only a single node, namely MDM2, RB,
P53, CDK2 or CDK4, is needed to drive the normal state to the cancer state and
that another driver node, namely AKT, PTEN or NFκB, is sufficient to switch the
system from the normal state to the apoptosis state (see Fig. C7 in Appendix C).
We took the driver nodes RB and NFκB as examples to show the designed control
functions for achieving the transitions from the normal state to the cancer and
apoptosis states, respectively (4). In addition, controlling any one of the six genes,
including NFκB, AKT, PTEN, VEGF, HGF and HIF1, can cause the system to
switch from the apoptosis state to the normal state and controlling AKT can induce
an apoptosis-to-cancer transition (see Fig. C8 in Appendix C). Taken together,
our results revealed that AKT, RB, PTEN, NFκB, CDK2 and VEGF play critical
roles in the transitions among the cancer, normal and apoptosis states and may be
possible targets for preventing cancer occurrence or transforming the early cancer
state back to the normal state, which is consistent with findings that the repression
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Figure 7. Domain control of the cancer network transitions from
the cancer state to the apoptosis state and normal state. The
representative node state trajectories x(t) (A-D), control function
u(t) (E) and control error e(t) (F) are depicted when AKT and
RB are controlled, respectively. The symbols x4, x6, x10 and x25

indicate the activities of PTEN, RB, AKT and NF-κB, respectively.
The black dashed lines with star markers indicate the cancer state,
i.e., the undesired state with no control. The blue solid lines with
squares and red solid lines with filled circles represent transitions
from cancer (C) to apoptosis (A) (denoted by C→A) and cancer
(C) to normal (N) (denoted by C→N), respectively. The driver
node is AKT when cancer is steered to the apoptosis and RB when
cancer is driven to the normal state.

of key oncogene AKT will inhibit the formation of cancer state [20, 58] and that
PTEN and NFκB play an integral role in preventing the onset and progression of
numerous cancers [48, 8], implying that control of these genes can attenuate cancer
by inducing a cancer-to-normal transition or cell apoptosis. Fig. 8 summarizes the
practically required driver nodes needed to achieve domain control of the transitions
among the cancer, normal and apoptosis states found using our approach.

5.4. Biological implications.

5.4.1. New systems biology approaches to reveal the underlying mechanisms. Net-
work based systems biology approaches have recently emerged as powerful tools for
the study of complex diseases [6] because these promising approaches allow us to
take a more systems-level view of a biological process and thereby identify multiple
factors (such as genes, proteins and their regulations) responsible for maintaining
different cellular phenotypes and driving different cell fate decisions. In this study,
using a novel network control framework, we identified the key proteins and their
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Figure 8. Domain control strategies for phenotype transitions of
the cancer network. The practically required driver nodes (genes)
for realizing domain controllability of this network were presented.
For example, the normal and apoptosis states can be induced from
the cancer state by any one of the two genes (RB and CDK2) and
any one of the three genes (AKT, PTEN and NFκB), respectively.

interactions in biological networks that determine the transitions between normal
and disease states. For example, in the EMT network that is established during
developmental and disease processes, we identified that any one of the four genes
(SNAI1, ZEB1, ZEB2 and miR-203) can induce the system to switch between the
epithelial and mesenchymal states (Figs. 2B and 3). Interestingly, results from
biological experiments have demonstrated that SNAI1 and ZEB1 can promotes tu-
morigenicity and miR-203 functions as a tumor suppressor in basal cell carcinoma
[59, 14, 27], suggesting that these genes are crucial for the EMT program and dys-
regulation of them may result in cancerization. In the Th differentiation cellular
network, we found that T-bet is needed for the transition from Th0 to Th1 and
that GATA-3 is needed for the transition from Th0 to Th2 (Figs. 4B and 5), which
agrees with previous reports [22, 23]. Importantly, we determined that one of three
genes, namely IFN-γR, JAK1 and STAT1, is required for the transition from Th0 to
Th1 and that one of the two genes IL-4R and STAT6 is required for the transitions
from Th0 to Th2 and Th1 to Th2, respectively, which are findings that have not
previously been reported. In the cancer network, our results uncovered that activa-
tion of RB(a tumor repressor gene) activity and AKT(an oncogenes) activity can
drive the system from the normal state to the cancer state and the apoptosis state
(Fig. C7), respectively, providing possible mechanisms for cancer formation. Taken
together, these results predict that disease-associated genes and proteins. There-
fore, our control framework provides a novel approach for uncovering the underlying
mechanisms through which proteins and their interactions lead to diseases.

5.4.2. Network-based drug targets for complex diseases. Complex diseases are often
regulated by the underlying biological networks, which can exhibit complex non-
linear dynamical behaviors. With the increase of network structure and dynamics
being uncovered, the design of network-based drugs may be feasible and thereby
provide an attractive strategy to potentially treat complex diseases such as can-
cer [2, 13, 44]. In our analyses, we looked at diseases as an undesirable network
state and reframed the goal of drug therapy toward shifting the network back to
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a normal state. In the cancer network, we demonstrated that NFκB is sufficient
to switch the system from the apoptosis state to the normal state and that AKT
is sufficient to induce the transition of the system from the apoptosis state to the
cancer state (Fig. C8). More importantly, our results provide certain predictions
regarding which genes in the cancer network are critical to the transitions from the
cancer to the normal and apoptosis states. We revealed that a single driver node,
such as RB or CDK2 (an oncogene), can induce the transition from the cancer state
to the normal state and that another driver node, such as AKT, PTEN (a tumor
suppressor gene) or NFκB (a critical link between inflammation and cancer [8]) can
induce cancer cell death (Figs. 7 and 8). These results may provide two rational
drug designs of anti-cancer strategies, namely returning the early cancer state back
to the normal state or inducing the death of cancer cells, for the prevention of cancer
initiation and progression by perturbation of the activities of these genes through
experimental techniques. Taken together, the key nodes and their dynamics iden-
tified in this study can be used to guide the design of anti-cancer strategies that
involve targeting key genes or their regulations.

In summary, the approach described here will not only provide a new system-
s biology approach for revealing novel pathogenic mechanisms of complex diseases
through which genes or proteins lead to disease but also aid the development of inno-
vative intervention strategies for the prevention and treatment of complex diseases
that involve the manipulation of the biochemical state of genes or the dynamics of
signal transduction.

6. Discussions and Conclusions. In this study, we present a new theoretical
approach to describe the controllability of networks using a novel concept of do-
main control and demonstrate how to drive a complex networked system transition
from one domain of attraction to another. Such problems are of practical rele-
vance and importance, particularly in the identification of potential disease genes
and the development of therapeutic strategies for complex diseases. Based on our
theory, we have proposed an algorithm of identifying the driver nodes for realizing
domain controllability. More importantly, we have designed a general form of con-
trol functions, which can be used to uncover the practically required driver nodes
for inducing transition from one domain of attraction to another. The successful
application of domain controllability analysis to three real disease-related networks
demonstrates the effectiveness of our approach, which provides a powerful tool for
finding the critical nodes (genes) that contribute to phenotype transitions of sys-
tems. Recent life sciences are aiming at the control of biological systems for medical
purposes. Such problems may be solved if we can identify the key driver genes and
control the activity of these genes. Overall, these results indicate that our proposed
domain controllability framework not only offers a practical control scheme but also
identifies potential disease genes and drug targets, providing innovative therapeutic
approaches, as well as prognostic or diagnostic markers for complex diseases.

To demonstrate the robustness of the control effectiveness, we performed the
perturbation analysis for the EMT core network presented in section 5.1. The
parameter values in (25) are perturbed within 10% variations for 100 times. Figure
C9 shows the evolution of the control function u(t) and the control error e(t) of
each perturbation across 100 disturbed parameter sets. As shown in Fig. C9, there
are almost no changes of u(t) and e(t) with the perturbations of the parameters. In
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other words, the control effectiveness is robust to perturbations of the parameter
values.

Despite these exciting results regarding the control of the nonlinear dynamics
of complex networks, domain control frameworks can still meet some difficulties.
For example, estimating the domains of attraction is an important and challenging
problem in higher-dimensional nonlinear systems [68]. Although many techniques
have been proposed to address this problem, these are mainly based on the elements
of Lyapunov stability theory [4, 37]. Unfortunately, Lyapunov functions are difficult
to determine using computational and analytical methods [29]. In this study, we
employed a sampling method to estimate the domains of attraction, which was
proven to efficiently address the domain controllability problem, as demonstrated
through its applications to several complex systems.

To identify the driver nodes for achieving domain controllability, we employed
the method presented in the proof of Theorem 3.1 to obtain theoretically required
driver nodes, including two index sets K and Q. The set Q is similar to a minimal
feedback vertex set of a directed graph in graph theory, which has been studied
in previous literatures [17, 39]. However, one of the remarkable aspects is that we
designed a general form of control functions for realizing domain controllability. It
is of great importance because it tells us the proper control input that we should
impose on the driver nodes in practice. Therefore, we also performed simulations to
obtain practically required driver nodes. Undoubtedly, these methods may take too
much time to determine the set Q for the high-dimension problems. Because this
study focused on the theory of domain controllability and its validation using the
numerical simulations, designing effective algorithms for high-dimension problems
would be our further work. In addition, nonlinear systems often display different
types of attractors, such as stable steady states (fixed points), periodic attractors
and strange attractors. In this paper, we mainly studied the transition between
different stable steady states which have been observed in complex disease systems.
However, the proposed approaches should also be extended to include other types
of attractors which need for further examination.

In summary, we developed a practical and efficient framework for the domain
controllability of nonlinear dynamical networks based on theoretical analysis and
successfully applied to three disease-related complex networks. The principles out-
lined here can be used to guide pharmacological design and optimize drug com-
bination strategies targeting complex diseases. Furthermore, the phenomenon of
multistability has observed in many important biological processes such as cell cy-
cle and cell fate decision. Therefore, our approaches are of wide applications in the
biological and medical fields, as explained in section 5.4. In addition, the approach-
es presented here can also be extended to the control of related problems in other
fields such as engineering and economy only if the dynamical system can exhibit
multistable phenomenon. Our methodological framework may lead to new insights
into how the behavior of complex systems can be altered in a desired manner.

Appendix A. Three biological examples for illustrating the definitions of
the sets K and Q. In this section, we first give two simple but famous biological
examples to explain how to obtain the set K and show the biological significance of
the selected set K.

The first example is a system without any self-feedbacks. The well-known bistable
gene-regulatory network, i.e., the genetic toggle switch in Escherichia coli, has been
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constructed and verified experimentally [18]. The regulatory network is shown in
Fig. A1.

Figure A1. The gene-regulatory network of the genetic toggle switch.

The dynamical model of this system is presented as follows.

dx1

dt
=

α1

1 + xβ2
− x1,

dx2

dt
=

α2

1 + xγ1
− x2,

(A1)

where x1, x2 represent the concentrations of repressors 1 and 2, respectively. α1

and α2 indicate the effective rate of synthesis of repressors 1 and 2, respectively. β
and γ are the cooperativity of repression of promoters 2 and 1, respectively.

From the system (A1), it is easy to obtain that ∂F1

∂x1
= −1 < 0, ∂F2

∂x2
= −1 < 0.

According to the definition of the set K, the set K for this system is empty.
The second example is a gene regulatory circuit with a self-feedback, which in-

cludes two genes. The regulatory network is shown in Fig. A2.

Figure A2. A two-gene regulatory circuit with a self-feedback.

The dynamical model of this system is presented as follows (Please see the details
of the model in the previous study [67]).

dx1

dt
= α1

β1+xn1
(Kn

1 + xn1 )(1 + (x2/K2)
n
)
− λ1x1,

dx2

dt
= α2

β2+xn1
Kn

3 + xn1
− λ2x2,

(A2)

where x1, x2 represent the expression levels of genes 1 and 2, respectively. α1 and α2

are the maximum expression rate. β1 and β2 indicate the inverse of the fold-change
of enhanced transcription rates when the promoter is occupied by the activator.
K1 and K2 are Michaelis constants and n is the Hill coefficient. λ1 and λ2 are the
degradation rates.

According to the system (A2), we have ∂F2

∂x2
= −λ2,

∂F1

∂x1
= α1

1+(x2/K2)n
nxn−1

1 (Kn
1 −β1)

(Kn
1 +xn

1 )2
−

λ1. Because λi are degradation rates, thus λi > 0(i = 1, 2). Based on the biological
significance of the parameters, we have βi = ρiK

n
i (ρi ∈ [10−3, 10−2], i = 1, 2) [67].

Thus, it is easy to see that ∂F1

∂x1
≥ 0 is not constantly negative. Thus K = {1}.

The main idea of determining the set Q is that a set of variables are selected such
that the dynamical equations of all of the remaining variables can be expressed as
explicit functions of these selected variables by successive evaluation of their dynam-
ical equations. To clearly show the relationships between the controlled variables
and the remaining variables, we give a schematic diagram in Fig. A3.



DOMAIN CONTROL OF NONLINEAR NETWORKED SYSTEMS 25

Figure A3. A schematic diagram of the relationships between
the controlled variables (nodes) and the remaining variables. We
relabel the indexes of variables of the system such that the control
set C = {1, ...,m}. Then the (m + 1)-th equation only contains
the variables in the control set C. The (m + 2)-th equation only
contains the variables in the union of the control set C and (m+1)-
th node. By this analogy, the (n)-th equation contains the variables
in the set C

⋃
{m+ 1, · · · , n− 1}.

To further illustrate the definition of the set Q, we give two simple examples.
Example 1. We also consider the system of the genetic toggle switch and its

corresponding dynamical equations in (A1). According to (A1), the second equation
only includes the first variable x1 except for itself x2, namely N(2) = {1}, where
N(i) is the index set of variables which are in the i-th equations of the system but
exclude the index i. In other words, the second equation is an explicit function of
x1. Obviously, N(2) ⊆ {1}. Because K = ∅, then we can choose the set Q = {1}.
Accordingly, C = Q

⋃
K = {1}. Therefore, (7) holds. Actually, the set Q is not

unique. Since N(1) = {2}, i.e., the first equation is also an explicit function of x2,
Similar to the above method, the set Q can also be set as {2}.

Example 2. The famous Goodwin model [15]. The end-product of a metabolic
pathway inhibits the expression of a gene coding for an enzyme that catalyzes a
reaction step in the pathway, which is shown in Fig. A4.

Its dynamics is governed by three ordinary differential equations.

ẋ1 = k1r(x3)− d1x1,

ẋ2 = k2x1 − d2x2,

ẋ3 = k3x2 − d3x3,

(A3)

where x1, x2, x3 represent the concentrations of a gene mRNA, an enzyme and a
metabolite, respectively. ki is production constant, di is degradation constant, and
r : R→ R is a decreasing, nonlinear function.
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Figure A4. The Goodwin model for a genetic regulatory system
involving end-product inhibition.

According to (A3), the second equation only includes the first variable x1 except
for itself x2, that is, N(2) = {1}. Similarly, we have N(3) = {2}. By successive
evaluation of the dynamical equations, the third equation is also an explicit function
of x1. Thus, we can select the set Q to be {1} and C = Q

⋃
K = {1}. It can easily

be shown that N(2) ⊆ C,N(3) ⊆ C
⋃
{2}. In fact, the set Q is also not unique. It

is easy to verify that the set Q can also be set as {2} or {3}.

Appendix B. Mathematical models of the Th differentiation cellular net-
work and the cancer network.

B.1. Mathematical model of the Th differentiation cellular network. In
the literature [16], the steady states of the Th differentiation cellular network were
calculated using the SQUAD program, a software for the dynamic simulation of
signaling networks. SQUAD converts the network into a discrete dynamical model
and then creates a continuous dynamical model to identify all the steady states of
the system. However, the automatically transformed continuous model is extremely
complicated. In our study, we constructed a simplified ODE model by combining
these existed models and the law of mass action. The dynamics of the Th differen-
tiation cellular network is quantified by the following differential equations.

ẋ1 =
k1−1x1 + k1−21x21

1 + k1−1x1 + k1−21x21 + k1−22x22
− d1x1,

ẋ2 = −d2x2,
ẋ3 = k3−2x2 − d3x3,

ẋ4 =
k4−14x14 + k4−16x16 + k4−20x20 + k4−22x22

1 + k4−14x14 + k4−16x16 + k4−20x20 + k4−22x22 + k4−19x19
− d4x4,

ẋ5 = k5−4x4 − d5x5,

ẋ6 = k6−1x1 − d6x6,

ẋ7 = k7−6x6 − d7x7,

ẋ8 = −d8x8,

ẋ9 =
k9−8x8

2

1 + k9−8x82 + k9−21x212
− d9x9,

ẋ10 = −d10x10,

ẋ11 =
k11−10x10

2

1 + k11−10x102 + k11−21x212
− d11x11,

ẋ12 =
k12−1x1

2

1 + k12−1x12 + k12−18x182
− d12x12,

ẋ13 =
k13−12x12

2

1 + k13−12x122 + k13−17x172
− d13x13,

(B1)
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ẋ14 = k14−11x11 − d14x14,

ẋ15 =
k15−5x5

2

1 + k15−5x52 + k15−17x172
− d15x15,

ẋ16 = k16−23x23 − d16x16,

ẋ17 = k17−18x18 + k17−22x22 − d17x17,

ẋ18 = k18−3x3 + k18−15x15 − d18x18,

ẋ19 = k19−7x7 − d19x19,

ẋ20 = k20−9x9 − d20x20,

ẋ21 = k21−13x13 − d21x21,

ẋ22 =
k22−18x18 + k22−22x22

1 + k22−1x1 + k22−22x22 + k22−18x18
− d22x22,

ẋ23 = −d23x23,

where xi(i = 1, 2, · · · , 23) represents the activity level of GATA-3, IFN-β, IFN-
βR, IFN-γ, IFN-γR, IL-10, IL-10R, IL-12, IL-12R, IL-18, IL-18R, IL-4, IL-4R,
IRAK, JAK1, NFAT, SOCS1, STAT1, STAT3, STAT4, STAT6, T-bet and TCR,
respectively. The parameters used to perform numerical simulations are: d1 =
0.4, d2 = 1, d3 = 1, d4 = 0.3, d5 = 1, d6 = 1, d7 = 1, d8 = 1, d9 = 1, d10 = 1, d11 =
1, d12 = 0.4, d13 = 0.6, d14 = 1, d15 = 1, d16 = 1, d17 = 1, d18 = 1, d19 = 1, d20 =
1, d21 = 0.6, d22 = 0.4, d23 = 1, ki−j = 1(i, j = 1, 2, · · · , 22).

B.2. Mathematical model of the cancer network. The ODEs describing the
dynamics of the cancer network are formulated as follows [32].

ẋ1 =
2bSn

Sn + s32x32n
− kx1,

ẋ2 =
a (s1x1n + s9x9n + s14x14n) /3

Sn + 1/3s1x1n + 1/3s9x9n + 1/3s14x14n
+

2bSn

2Sn + s16x16n + s31x31n
− kx2,

ẋ3 =
a (s2x2n + s8x8n + s29x29n) /3

Sn + 1/3s2x2n + 1/3s8x8n + 1/3s29x29n
+

3bSn

3Sn + s9x9n + s10x10n + s16x16n
− kx3,

ẋ4 =
as2x2n

Sn + s2x2n
+

bSn

Sn + s25x25n
− kx4,

ẋ5 =
as13x13n

Sn + s13x13n
+

bSn

Sn + 1/3s14x14n + 1/3s17x17n + 1/3s19x19n
− kx5,

ẋ6 =
2bSn

Sn + 1/2s17x17n + 1/2s18x18n
− kx6,

ẋ7 =
as20x20n

Sn + s20x20n
+

bSn

Sn + 1/2s15x15n + 1/2s32x32n
− kx7,

ẋ8 =
2bSn

Sn + 1/3s4x4n + 1/3s10x10n + 1/3s16x16n
− kx8,

ẋ9 =
a (s11x11n + s13x13n + s25x25n + s26x26n) /4

Sn + 1/4s11x11n + 1/4s13x13n + 1/4s25x25n + 1/4s26x26n
+

bSn

Sn + s29x29n
− kx9,

ẋ10 =
a (s11x11n + s12x12n + s13x13n) /3

Sn + 1/3s11x11n + 1/3s12x12n + 1/3s13x13n
+

bSn

Sn + s4x4n
− kx10,

ẋ11 =
a (s10x10n + s13x13n + s14x14n + s27x27n + s28x28n)

5Sn + s10x10n + s13x13n + s14x14n + s27x27n + s28x28n
+

bSn

Sn + s29x29n
− kx11,

ẋ12 =
a (s9x9n + s10x10n + s11x11n + s13x13n + s14x14n + s15x15n)

6Sn + s9x9n + s10x10n + s11x11n + s13x13n + s14x14n + s15x15n
+

bSn

Sn + s2x2n

− kx12,
(B2)
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ẋ13 =
2a (s12x12n + s14x14n + s28x28n) /3

Sn + 1/3s12x12n + 1/3s14x14n + 1/3s28x28n
− kx13,

ẋ14 =
a (s10x10n + s13x13n + s25x25n + s26x26n + s28x28n)

5Sn + s10x10n + s13x13n + s25x25n + s26x26n + s28x28n
+

bSn

Sn + s2x2n
− kx14,

ẋ15 =
as14x14n

Sn + s14x14n
+

bSn

Sn + 1/2s2x2n + 1/2s29x29n
− kx15,

ẋ16 =
a (s2x2n + s10x10n + s26x26n + s32x32n)

4Sn + s2x2n + s10x10n + s26x26n + s32x32n
+

3bSn

3Sn + s1x1n + s6x6n + s7x7n
− kx16,

ẋ17 =
a (s9x9n + s10x10n + s20x20n)

3Sn + s9x9n + s10x10n + s20x20n
+

2bSn

2Sn + s3x3n + s6x6n
− kx17,

ẋ18 =
a (s9x9n + s25x25n + s26x26n) /3

Sn + 1/3s9x9n + 1/3s25x25n + 1/3s26x26n
+

bSn

Sn + s6x6n
− kx18,

ẋ19 =
2bSn

Sn + 1/3s3x3n + 1/3s5x5n + 1/3s30x30n
− kx19,

ẋ20 =
as1x1n

Sn + s1x1n
+

bSn

Sn + 1/2s6x6n + 1/2s17x17n
− kx20,

ẋ21 =
a (s22x22n + s23x23n) /2

Sn + 1/2s22x22n + 1/2s23x23n
+

bSn

Sn + 1/2s10x10n + 1/2s24x24n
− kx21,

ẋ22 =
a (s2x2n + s9x9n) /2

Sn + 1/2s2x2n + 1/2s9x9n
+

bSn

Sn + s24x24n
− kx22,

ẋ23 =
2bSn

Sn + s10x10n
− kx23,

ẋ24 =
a (s12x12n + s13x13n + s25x25n) /3

Sn + 1/3s12x12n + 1/3s13x13n + 1/3s25x25n
+

bSn

Sn + 1/2s2x2n + 1/2s21x21n
− kx24,

ẋ25 =
a (s10x10n + s13x13n) /2

Sn + 1/2s10x10n + 1/2s13x13n
+

bSn

Sn + s4x4n
− kx25,

ẋ26 =
2a (s11x11n + s12x12n + s27x27n) /3

Sn + 1/3s11x11n + 1/3s12x12n + 1/3s27x27n
− kx26,

ẋ27 =
2as28x28n

Sn + s28x28n
− kx27,

ẋ28 =-kx28,

ẋ29 =
2as14x14n

Sn + s14x14n
− kx29,

ẋ30 =
2as19x19n

Sn + s19x19n
− kx30,

ẋ31 =
a (s10x10n + s32x32n) /2

Sn + 1/2s10x10n + 1/2s32x32n
+

bSn

Sn + 1/2s7x7n + 1/2s16x16n
− kx31,

ẋ32 =
2as2x2n

Sn + s2x2n
− kx32.

In the above equations, S represents the threshold (inflection point) of the explic-
itly sigmoid functions, i.e. the strength of the regulatory interaction, and n is the
Hill coefficient which determines the steepness of the sigmoid function. In addition,
k is self-degradation constant, b is repression constant and a is activation constan-
t. si indicates the activation or inhibition strength (i = 1, 2, · · · , 32). The default
parameter values are: S = 0.5, n = 4, a = 0.5, b = 0.5, k = 1, s1 = 1.028, s2 =
1.281, s3 = 0.598, s4 = 0.827, s5 = 1.02, s6 = 2.244, s7 = 1.037, s8 = 1.507, s9 =
0.203, s10 = 1.299, s11 = 1.337, s12 = 0.921, s13 = 2.044, s14 = 0.678, s15 = 0.924, s16 =
0.467, s17 = 0.947, s18 = 0.242, s19 = 0.941, s20 = 0.48, s21 = 0.666, s22 = 0.232, s23 =
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1.156, s24 = 0.951, s25 = 0.849, s26 = 0.698, s27 = 1.288, s28 = 0.966, s29 = 1.419, s30 =
0.401, s31 = 0.293, s32 = 1.479.

Appendix C. Appendix figures.

Figure C1. Distributions of the domains of attraction of the
EMT core network model. We project the domains into a two-
dimensional plane. The light red and light yellow regions represent
the domains of attraction of the epithelial attractor and mesenchy-
mal attractor, respectively.
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Figure C2. Domain control of the EMT core network transition
from the epithelial state to the mesenchymal state by the theo-
retically required driver nodes. The node state trajectories x(t)
(A-F), control function u(t) (G) and control error e(t) (H ) are
depicted when the theoretically required driver nodes (i.e., miR-200
and miR-203) are controlled. The symbols x1, x2, x3, x4, x5 and x6

indicate the activities of CDH1, SNAI1, ZEB1, ZEB2, miR-200 and
miR-203, respectively. u5 and u6 indicate the control functions for
miR-200 and miR-203, respectively. The black dashed and blue
solid lines represent the initial epithelial state (i.e., the undesired
state with no control) and desired mesenchymal state, respectively.
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Figure C3. Effect of the parameter λ in the designed control func-
tion on the domain control of the EMT core network. The node
state trajectories x(t) (A-F), control function u(t) (G) and control
error e(t) (H ) are depicted when the practically required driver n-
ode, namely miR-203, is controlled. The symbols x1, x2, x3, x4, x5

and x6 indicate the activities of CDH1, SNAI1, ZEB1, ZEB2, miR-
200 and miR-203, respectively. The black dashed and colored solid
lines represent the initial epithelial state (i.e., the undesired state
with no control) and desired mesenchymal state, respectively. Here,
we take the EMT core network as an example to show how the pa-
rameter λ in our designed control function influences the control
process. As shown in (H), to a certain extent, a higher absolute
value of indicates a less time the system takes to evolve to the
desirable attractor. However, there is no significant influence when
the absolute value of λ is larger than 1.
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Figure C4. Distributions of the domains of attraction of the Th
differentiation cellular network model. We project the domains into
a two-dimensional plane. The light red and light yellow regions
represent the domains of attraction of the Th1 attractor and Th2
attractor, respectively.
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Figure C5. Domain control of the T helper differentiation cel-
lular network transition from Th1 to Th2. The representa-
tive node state trajectories x(t) (A-K ), control function u(t)
(L) and control error e(t) (M ) are depicted. The symbols
x1, x4, x5, x6, x7, x12, x13, x17, x19, x21 and x22 indicate the activi-
ties of GATA-3, IFN-γ, IFN-γR, IL-10, IL-10R, IL-4, IL-4R, SOC-
S1, STAT3, STAT6 and T-bet, respectively. The dashed black line
indicates the Th1 phenotype, i.e. the initial state with no control.
The solid blue line represents the Th2 phenotype. The driver node
is GATA-3 when Th1 is driven to the Th2 phenotype.
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Figure C6. Distributions of the domains of attraction of the can-
cer network. We project the domains into a two-dimensional plane.
The light red and light yellow regions represent the domains of at-
traction of the cancer attractor and normal attractor, respectively.
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Figure C7. Domain control of the cancer network transition-
s from the normal state to the apoptosis state and cancer state.
The representative node state trajectories x(t) (A-L), control func-
tion u(t) (M ) and control error e(t) (N ) are depicted when AKT
(uN→A) and RB (uN→C) are controlled, respectively. The symbol-
s x4, x5, x6, x10, x12, x13, x14, x16, x18, x21, x22 and x25 indicate the
activities of PTEN, CDH1, RB, AKT, VEGF, HGF, HIF1, MDM2,
CDK4, Caspase, BAX and NFκB, respectively. The black dashed
lines with star markers indicate the normal state, i.e., the initial
state with no control. The red solid lines with filled circles and
blue solid lines with squares represent transitions from normal (N)
to apoptosis (A) (denoted by N→A) and normal (A) to cancer (C)
(denoted by N→C), respectively. The driver node is AKT when
normal is steered to the apoptosis and RB when normal is driven
to the cancer state.
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Figure C8. Domain control of the cancer network transitions
from the apoptosis state to the normal state and cancer state. The
black dashed lines with star markers indicate the apoptosis state,
i.e., the undesired state with no control. The red solid lines with
filled circles and blue solid lines with squares represent transition-
s from the apoptosis state (A) to normal state (N) (denoted by
A→N) and apoptosis state (A) to cancer (C) (denoted by A→C),
respectively. The driver node is NFκB when the apoptosis state
is steered to the normal state and AKT when apoptosis state is
driven to the cancer state.
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Figure C9. Robustness analysis of the control effectiveness a-
gainst parameter perturbation. The evolution of the control func-
tion u(t) and control error e(t) are depicted when miR-203 is con-
trolled. Each curve represents one simulation for one perturbation
of the parameter values. In our numerical simulations, we random-
ly generate 100 parameter sets in which every parameter of the
system is perturbed within a range of ±10%. The initial state is
the epithelial state, which is set to be (1, 0, 0, 0, 1, 1)T in all the
numerical experiments. We zoom into the curves in a small win-
dow.
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