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Abstract: The control of complex networks is one of the most challenging problems in the fields of biology
and engineering. In this study, the authors explored the controllability and control energy of several signalling
networks, which consisted of many interconnected pathways, including networks with a bow-tie architecture. On
the basis of the theory of structure controllability, they revealed that biological mechanisms, such as cross-pathway
interactions, compartmentalisation and so on make the networks easier to fully control. Furthermore, using numerical
simulations for two realistic examples, they demonstrated that the control energy of normal networks with crosstalk is
lower than in networks without crosstalk. These results indicate that the biological networks are optimally designed to
achieve their normal functions from the viewpoint of the control theory. The authors’ work provides a comprehensive
understanding of the impact of network structures and properties on controllability.
1 Introduction

The control of complex networks is one of the most challenging
problems in modern network science and engineering. Although
great effort has been devoted to understanding the interplay
between complex networks and the dynamic processes that take
place within them in various natural and technological systems
[1–4], the control of complex dynamic networks remains an
important problem.

Cell signalling is one part of a complex system of communication
that governs basic cellular activities and coordinates cell actions.
Owing to the complexity of cellular signalling networks, their
control is very important. In many biological signal transduction
pathways, multiple input signals converge on a shared set of
signalling components, which route each input to the appropriate
output [5, 6]. In other words, most signalling networks exhibit
a bow-tie architecture: a huge number of inputs are converted to a
small number of intermediates, which then fan out to generate a
huge number of outputs. In a signalling network, complicated
interactions exist among proteins, such as activation and
inactivation, phosphorylation and dephosphorylation, dissociation
and degradation, and so on. Moreover, a crosstalk between
different pathways exists, and these complex interactions and
crosstalking make the dynamics of the networks complicated.
Although much progress has been made on the structural
controllability theory and network dynamics [7–12], the
exploration of the relationships between the controllability of
signalling networks and the architecture based on the network
dynamics is lacking. Therefore in this study, we focused on
investigating how the crosstalk mechanisms for signalling
networks affect the controllability of the signalling networks and
the control energy.

The paper is organised as follows. Section 2 provides the
network model and some preliminary results. The design and
analysis of the controllability of several simple signalling
networks and complex networks with bow-tie architecture based
on their dynamics are given in Sections 3 and 4, respectively.
The application of our methodology to two realistic examples is
shown in Section 5. Finally, some conclusions are addressed in
Section 6.
2 Network model and mathematical preliminaries

2.1 Controllability of complex networks

Although most real systems are non-linear processes, the
controllability of non-linear systems is in many respects
structurally similar to that of linear systems [8, 9, 12, 13]. In this
section, we introduce the notation, definitions and preliminary
results regarding the controllability of complex networks.

Suppose that the dynamics of a network with n nodes can be
described using the following time-invariant ordinary differential
equations (ODEs)

dx(t)

dt
= Ax(t)+ Bu(t) (1)

Vector x(t) = (x1(t), …, xN(t))
T captures the states of the N nodes at

time t. For example, xi(t) can denote the transcription factor
concentration in a gene regulatory network. Matrix A∈ RN×N

denotes the coupling matrix of the system, which describes the
strength of the system interactions of the links, and aij represents
the weight of a directed link from node j to i. Matrix B∈ RN × M is
the control matrix, and u(t) = (u1(t), …, uM(t))

T is the vector of M
controllers.

Definition 1: (Complete controllability): The network described by
(1) is said to be completely controllable if it can be steered from
any initial state to any desired final state in a finite time.

Theorem 1: (Kalman rank condition [14]): The system (A, B) is
completely controllable if and only if

rank[B, AB, . . . , AN−1B] = N (2)

To apply Theorem 1 to an arbitrary network, we need to know the
weight of each link, but most real networks are either unknown or
are only approximately known and are time dependent. Lin [15]
proposed a structurally controllable notation.
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Definition 2: (Structural controllability): The system (A, B) is
considered to be structurally controllable if it is possible to fix the
free parameters in A, B to certain values so that the obtained
system (A, B) is controllable in the usual sense.

Definition 3: (Strong structural controllability): The system (A, B) is
referred to as having strong structural controllability if the system
(A, B) is always controllable as long as every free parameter in A,
B is not zero.

According to the definitions, we can conclude that every strongly
structurally controllable system is also structurally controllable,
while the opposite is not true.

Definition 4: (Control energy): The energy cost of the control input u
(t) can be defined as

E(u(t), tf ) =
∫tf
0

u(t)
∥∥ ∥∥2dt (3)
2.2 Fixed-time minimum-energy controllability

For the N-dimensional linear time-invariant dynamics and given the
certain initial state of x0 = 0 and the certain target state xf, one method
for evaluating the qualities of the controllability is to consider the
fixed-time minimum-energy control problem. It can be defined as
follows [16]

min
u(t)[L2

∫tf
0

u(t)
∥∥ ∥∥2 dt

subject to
x
.
(t) = Ax(t)+ Bu(t)

x(0) = 0, x(tf ) = xf , [0, tf ] fixed

{ (4)

If the system is completely controllable, then the minimum control
energy is given by

∫tf
0

u∗(t)
∥∥ ∥∥2 dt = xTf W

−1
tf
xf (5)

where the matrix Wtf
= �tf

0 e
AtBBTeA

T tdt is referred to as the
Gramian matrix at time tf, and the optimal control input has the
following form

u∗(t) = BTeA
T (tf−t)W−1

tf
xf (6)

The Gramian matrix is positive semi-definite and has the same rank
as [B, AB, …, AN−1B].
Fig. 1 Basic network architecture with shared element x1.x0(t) and y0(t) are
input signals

Parameters a1, a2, b1 and b2 are activation rate constants, and d1, d2
x and d2

y are
inactivation or decay rate constants
2.3 Energy-related controllability metric

The controllability criteria, such as the Kalman rank condition [14],
only provides an answer to the binary question of whether the system
is controllable or not, but it does not associate with or identify the
degree of the quality of controllability. Muller [17] proposed three
energy-related controllability metrics: the trace, determinant and
maximum eigenvalue of the inverse characteristic Gramian matrix.
Here, we focused on the first metric, namely the trace of the
inverse characteristic Gramian matrix. This metric is given by the
average value of the minimum control energy over the unit
hypersphere {x:||x|| = 1}

�E(u∗, tf ) =
�

x‖ ‖=1 x
TW−1

tf
x dx�

x‖ ‖=1 dx
(7)
2

which is calculated as

�E(u∗, tf ) =
1

n
trW−1

tf
(8)

For practical applications, it is desirable to keep the average costs (8)
as small as possible. In this study, we use this average energy to
quantify the energy needed to control the network.
3 Controllability of several simple signalling
networks

3.1 Basic signalling network with shared elements

We begin with the simplest model of a multi-layered network. That
is, a simple signalling network is composed of two signalling
pathways, X and Y, which are initiated by the signals x0(t) and
y0(t), respectively (Fig. 1) [18, 19], and there are two outputs, x2
and y2.

The linear dynamics shown in Fig. 1 can be written as follows

ẋ1 = −d1x1 + u(t)
ẋ2 = a2x1 − dx2x2
ẏ2 = b2x1 − dy2y2

⎧⎨
⎩ (9)

where u(t) = a1x0(t) + b1y0(t) is the input signals or control function.
The coupling matrix in (9) can be written as

A =
−d1 0 0
a2 −dx2 0
b2 0 −dy2

⎡
⎣

⎤
⎦ (10)

where B = 1 0 0
[ ]T

and the controllability matrix C is given by

C = [B, AB, A2B] =
1 −d1 d21
0 a2 −a2(d1 + dx2)
0 b2 −b2(d1 + dy2)

⎡
⎣

⎤
⎦ (11)

When dx2 = dy2, then rank(C) = 2 < N and the system will be
uncontrollable. This result shows that the decay constants affect
the controllability in the simplest networks.
3.2 Effects of crosstalk on the controllability of signalling
networks

3.2.1 Inhibition between pathways: Real cellular signalling
networks that share components feature various elaborations, or
embellishments. Cross-pathway inhibition (Fig. 2) occurs when a
downstream component of pathway X inhibits a downstream
component of pathway Y [18, 19].
IET Syst. Biol., pp. 1–8
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Fig. 4 Networks with compartmentalisation or scaffolding
Fig. 2 Network with cross-pathway inhibition
The linear dynamics shown in Fig. 2 can be written as

ẋ1 = −d1x1 + u(t)
ẋ2 = a2x1 − dx2x2
ẏ2 = b2x1 − gx2 − dy2y2

⎧⎨
⎩ (12)

We then obtain the coupling matrix and the control matrix

A =
−d1 0 0
a2 −dx2 0
b2 −g −dy2

⎡
⎣

⎤
⎦, B =

1
0
0

⎡
⎣

⎤
⎦

and the controllability matrix is given by

C = [B, AB, A2B] =
1 −d1 d21
0 a2 −a2(d1 + dx2)
0 b2 −(b2d1 + b2d2

y + a2g)

⎡
⎣

⎤
⎦

We can easily obtain rank(C) = 3 = N. Therefore the system is
strongly structurally controllable when only controlling the shared
element x1. This result indicates that the controllability will be not
affected by the decay constants because of cross-pathway
inhibition in the networks. In other words, the cross-pathway
inhibition enhances the controllability of the networks.

We will take this network as an example to perform the
simulations. The parameters are generated randomly in (0, 1), and
the control function is computed using the method in [20]. The
numerical results show that all of the stated variables can be
controlled to the origin using our theoretical results (Fig. 3).

3.2.2 Networks with two insulating mechanisms:
compartmentalisation and the action of a scaffold
protein: Real cellular signalling networks that share components
typically contain one or more insulating mechanisms that are
Fig. 3 Numerical simulations of the dynamic model (12)
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thought to contribute to the specificity and fidelity [18, 21]. In
compartmentalisation, different pathways are localised to different
cellular compartments or to different spatial locations within the
cell (Fig. 4) [22]. The extent of leakage between the two pathways
is determined by the efficiency of the compartmentalisation. For
example, assume that the pathway-specific components of pathway
X are localised to the nucleus, while those of pathway Y are
localised to the cytosol. Although the shared kinase, x1, is found
in both compartments (xN1 is the nuclear pool and xC1 is the
cytosolic pool), x1, which is activated by the input signal x0 in
the nucleus, is likely to encounter target x2, which is also in the
nucleus; it will only encounter target y2 if it diffuses into
the cytosol before it is deactivated. Therefore crossover between
the two pathways occurs when kinase x1 leaks into or out of the
nucleus. Dx is the coefficient for the rate at which x1 exits the
nucleus and enters the cytosol, and Dy is the rate constant for x1
leaving the cytosol and entering the nucleus. Dx and Dy can be
considered to be pseudo-diffusion rate constants or exchange rate
constants. The parameters dx1 and dy1 are the deactivation constants
for x1 in the nucleus and cytosol, respectively. The parameters dx2
and dy2 are the deactivation constants for x2 and y2, respectively.

The linear dynamics shown in Fig. 4 can be written as

ẋN1 = − Dx + dx1
( )

xN1 + Dyx
C
1 + c1u

N
1 (t)

ẋC1 = Dxx
N
1 − Dy + dy1

( )
xC1 + c2u

C
1 (t)

ẋ2 = a2x
N
1 − dx2x2

ẏ2 = b2x
C
1 − dy2y2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(13)

where uN1 (t) = a1x0(t) and uC1 (t) = b1y0(t) are the input signals or
control functions.

The coupling matrix can be written as

A =
−(Dx + dx1) Dy 0 0

Dx −(Dy + dy1) 0 0
a2 0 −dx2 0
0 b2 0 −dy2

⎡
⎢⎢⎣

⎤
⎥⎥⎦

When B = 1 0 0 0
0 1 0 0

[ ]T
, the controllability matrix C is given as

follows (see equation at the bottom of the next page)

We easily find that rank(C) = 4 = N. Therefore the system is strongly
structurally controllable by only controlling the shared element x1.
4 Controllability of bow-tie signalling networks

A bow-tie or hourglass structure is a common architectural feature
found in biological and technological networks, especially in
metabolic and signalling networks [23, 24].

4.1 Simplest bow-tie structure

A bow-tie in a multi-layered network means that the network is
capable of processing many different inputs, by converting them
into a small set of universal building blocks and then re-using
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Fig. 5 Simplest three-layered bow-tie signalling network [23]

Fig. 6 Bow-tie three-layered signalling network with cross-pathway
inhibition
these building blocks to construct a wide range of outputs. In Fig. 5,
we illustrate several networks with three layers of nodes. There areM
input signals x(1)j (j = 1, 2, . . . , M ), only one shared element x(2)j and
N outputs signals x(3)j ( j = 1, 2, . . . , N ) [20].

The linear dynamics shown in Fig. 5 can be written as

ẋ(2)1 = −d(2)1 x(2)1 + u(t)

ẋ(3)i = aix
(2)
1 − d(3)i x(3)i , i = 1, . . . , N

{
(14)

where u(t) = ∑M
j=1 bjx

(1)
j is the input signal or control function. The

coupling matrix can be written as

A =

−d(2)1 0 0 0 0

a1 −d(3)1 0 0 0

a2 0 −d(3)2 0 0

..

. ..
. ..

. . .
. ..

.

an 0 0 0 −d(3)N

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

When B = 1 0 · · · 0
[ ]T

N×1, we obtain the following
controllability matrix C.

C = [B, AB, . . . , AN−1B]

=

1 −d1 d21 · · · (− 1)N−1dN−1
1

0 a2 −a2 d1 + d2
( ) · · · (− 1)Na2

∑N−2

i=0
dN−2−i
1 di2

0 a3 −a3 d1 + d3
( ) · · · (− 1)Na3

∑N−2

i=0
dN−2−i
1 di3

..

. ..
. ..

. ..
. ..

.

0 aN −aN d1 + dN
( ) · · · (− 1)NaN

∑N−2

i=0
dN−2−i
1 diN

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We easily find that rank(C)≤N− 1 <N when di = dj (i≠j, 2≤ i, j≤
N ). Therefore the system will be uncontrollable. In other cases, rank
C = [B, AB, A2B, A3B] W C1 C2

[

C1 =
1 0 0 0

0 1 0 0

[ ]T
, C2 =

− D
(⎡

⎣

C3 =
c31 −Dxc32 −a2 dx1 +

(
−Dyc32 c33 Dy

⎡
⎣

c31 = Dx + dx1
( )2 + DxDy, c32 = Dx + D

c33 = Dy + dy1

( )2
+ DxDy, C4 [ R4×

4

(C) =N and the system will be controllable. Taken together, the
system is structurally controllable, but not strongly structurally
controllable.
4.2 Bow-tie structure with cross-inhibition pathways

The linear dynamics shown in Fig. 6 can be written as

ẋ1 = D2x2 − d1x1 + u1(t)
ẋ2 = D1x1 − d2x2 + u2(t)
ẋ3 = a13x1 + a23x2 − d3x3
ẋ4 = a14x1 + a24x2 − g1x3 − d4x4
ẋ5 = a15x1 + a25x2 − g2x4 − d5x5

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(15)

where u1(t) = a1x0 + b1y0 + c1z0, u2(t) = a2x0 + b2y0 + c2z0 are the
input signals or control functions. When

B = 1 0 0 0 0
0 1 0 0 0

[ ]T
, the controllability matrix C is given as

follows (see equation at the bottom of the next page)

We find that this system is strongly structurally controllable because
of rank(C) = 5 =N. Compared with the system (14), our findings
show that cross-inhibitions enhance the controllability of bow-tie
signalling networks.
5 Application using realistic examples

To validate our results, we investigated the controllability of two
realistic biological systems from two different aspects. One
example is the innate immune signalling network [25–27], and the
other example is the cell-fate decision network [28–30].
C3 C4

]
x + dx1

)
Dx a2 0

Dy − Dy + dy1

( )
0 b2

⎤
⎦

T

dx2 + Dx

)
Dxb2

a2 −b2 dy2 + dy1 + Dy

( )
⎤
⎦

T

y + dx1 + dy1

2
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Fig. 7 Simplified diagram of virus-induced type I IFN signalling pathways
network [25]
5.1 Innate immune signalling network

The innate immune response is important for the regulation of
pathogen infections because most infectious pathogens are
eliminated through the innate immune response without
necessarily requiring the activation of adaptive immunity [25].
Viruses are a major pathogen in both humans and animals. In
response to a viral infection, dsRNA interacts with the RNA
helicase domain of RIG-I or MAD5, which transmits signals to
phosphorylate MITA. The phosphorylated MITA activates TBK1,
leading to the phosphorylation of IRF3 and IRF7. In addition,
phosphorylated MITA induces the activation of NF-κB via the
IKK proteins. The activated NF-κB and phosphorylated IRF3 and
IRF7 are translocated to the nucleus to trigger IFN mRNA
induction, which leads to the production of type I IFNs (IFN-α
and IFN-β). The type I IFNs induce the transcription of
IFN-stimulated genes, such as ISG56; some antiviral proteins and
IRF7 are also induced by IFN-mediated signalling pathways. The
induced ISG56 inhibits the activation of MITA and TBK1, and the
antiviral proteins inhibit the viral replication by targeting the viral
RNA [25, 26, 31]. The simplified diagram of the virus-induced
type I IFN signalling pathways is presented in Fig. 7, which
consists of ten nodes.

There are four cross-pathway interactions in this network,
including AVP—| virus, ISG56—| MITA, ISG56—| TBK1 and
IFN-β→IRF7. The linear dynamics shown in Fig. 7 can be
formulated as

ẋ1 = a1,1x1 − a1,10x10 − d1x1
ẋ2 = a2,1x1 − a2,9x9 − d2x2
ẋ3 = a3,2x2 − d3x3
ẋ4 = a4,3x3 − d4x4
ẋ5 = a5,2x2 − a5,9x9 − d5x5
ẋ6 = a6,5x5 − d6x6
ẋ7 = a7,5x5 + a7,8x8 − d8x8
ẋ8 = a8,4x4 + a8,6x4 + a8,7x4 − d8x8 + u(t)
ẋ9 = a9,8x8 − d9x9
ẋ10 = a10,8x8 − d10x10

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

which can be written as

ẋ = Ax+ Bu (17)

where x = (x1, x2, ..., xN)
T represents the states of the nodes, and xi

represents the concentration of the virus, MITA, IKK, NF-κB,
C = [B, AB, A2B, A3B, A4B] W C1 C
[

C1 = 1 0 0 0 0
[ ]T

, C2 = 0 1
[

C3 = −d1 D1 a13 a14 a15
[ ]T

, C4

C5 =

d1
2 + D1D2

−D1(d1 + d2)

a23D1 − a13 d1 + d3
( )

a24D1 − a14 d1 + d4
( )− a13g1

a25D1 − a15 d1 + d5
( )− a14g2

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦
, C

C7 =

−D1D2(d1 + d2)−
d2D1(d1 + d2)+ D

d3 a13d1 − D1a23 + a13d3
( )− a23

g1 a13d1 − D1a23 + a13d3
( )− a24D

+d4 a14(d1 + d4)− D1a24 + a13g
(
d5(a15(d1 + d5)− D1a25 +
g2 a14(d1 + d4)− D1a24 + a
(

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C8 [R5×3
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TBK1, IRF3, IRF7, IFN-β, ISG56 and AVP. ai,j indicates the
interaction strength from node j to i, and di is the degradation rate.
A∈RN × N denotes the coupling matrix of the system, where the
diagonal element is −di, with the exception of the first element,
which is a11− d1. u(t) is the control function, and B is the control
matrix.

We investigated the controllability of this network using the
maximum multiplicity theory (MMT) [9] by assigning each
parameter a random weight. We found that the minimum driver
node is 1 for the network either with or without crosstalk
interactions, which is consistent with the results determined
according to the maximum matching algorithm [7]. In the
implementation of the maximum matching algorithm, we
considered the degradation term as a self-loop for each node.
Using the well-known Hopcroft–Karp algorithm [32], we showed
that the network both with and without crosstalk interactions
matched perfectly. In this case, any single node can be the driver
node. We focused on IFN-β as the driver node, because of its
critical role in the viral-induced immune response [26, 31]. When
we controlled IFN-β, we found that the rank of the controllability
matrix was 10 (fully ranked), while the rank of the controllability
matrix was 3 (not fully ranked) if the four cross-pathway
2 C3 C4 C5 C6 C7 C8

]
0 0 0

]T
= D2 −d2 a23 a24 a25

[ ]T

6 =

−D2(d1 + d2)

d2
2 + D1D2

a13D2 − a23 d2 + d3
( )

a14D2 − a24 d2 + d4
( )− a23g1

a15D2 − a25 d2 + d5
( )− a24g2

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

d1 d1
2 + D1D2

( )
1 d1

2 + D1D2

( )
D1 d1 + d2

( )+ a13 d21 + D1D2

( )
1 d1 + d2
( )+ a14 d1

2 + D1D2

( )
1

)
a14g2)− a25D1(d1 + d2)+
13g1

)+ a15 d1
2 + D1D2

( )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Fig. 8 Comparison of the average energy between the network with crosstalk and that without it over the time tf
a Solid line indicates the average energy needed to completely control the network with the four cross-pathway interactions, and dashed line represents the results of the network without
the four cross-pathway interactions
b Numerical results for the network with the four activation interactions between pathways and that without them
Average energy is the value by evaluating the natural logarithm. We assign each parameter a random value for the coupling matrix A of the system to calculate the average energy. In this
figure, the parameters are set as follows: a1,10 = 0.0464, a2,1 = 0.7719, a2,9 = 0.6311, a3,2 = 0.3883, a4,3 = 0.2290, a5,2 = 0.4845, a5,8 = 0.8258, a6,5 = 0.7819, a7,5 = 0.2941, a7,8 = 0.0484,
a8,4 = 0.5309, a8,6 = 0.0915, a8,7 = 0.4053, a9,8 = 0.1123, a10,8 = 0.2916, a1,1−d1 = 0.0867, d2 = 0.2057, d3 = 0.5518, d4 = 0.6419, d5 = 0.1518, d6 = 0.1006, d7 = 0.2374, d8 = 0.1048, d9 =
0.7844 and d10 = 0.6053
interactions were not present. Therefore the actual network is
strongly structurally controllable, while the network without
cross-pathway interactions is structurally controllable, but not
strongly structurally controllable, suggesting that crosstalk can
enhance the controllability of signalling networks.

Conversely, to specify the qualities of controllability, we
calculated the average energy using metric (8). To perform an
analysis of the average energy, the network should be completely
controllable. Therefore we chose two driver nodes, namely the
virus and IFN-β, to make the system satisfy the Kalman rank
condition. We assigned each parameter a random value for the
coupling matrix A of the system. The numerical results showed
that the control of the network requires less energy than the
control of the network without the four cross-pathway interactions
(Fig. 8a). These results further demonstrate that the biological
mechanisms make it easier to fully control the networks.
Fig. 9 Schematic diagram of the core interacting network between the
cell-cycle commitment and the mating arrest for cell-fate decision in
budding yeast [29]

6

To further investigate whether activation interactions between
pathways can also allow networks to be controlled with less
energy, we assumed the interactions, including AVP and the virus,
ISG56 and MITA, and ISG56 and TBK1, to be activation
interactions. The numerical results confirmed our hypothesis
(Fig. 8b). We observed that the network uses less energy than the
network without the four activation interactions when the network
is completely controllable. Taken together, our findings
demonstrate that crosstalk, regardless of whether it is an inhibition
interaction or an activation interaction, makes the network easier to
control.
5.2 Cell-fate decision network

The selection of a cell’s fate in response to internal and external
stimuli is essential for the development of multicellular organisms.
Therefore it is important to precisely understand how cell-fate
decisions are made. The core interaction network between the
cell-cycle commitment and the mating arrest pathway from
cell-fate decisions in budding yeast has been constructed in [30].
This network includes two subsystems, namely the cell cycle
subsystem and the pheromone-induced MAPK pathway subsystem.
In budding yeast, cell cycle commitment is initiated by the G1
cyclin Cln3, which forms a complex with Cln3-Cdk to
phosphorylate the transcriptional inhibitor Whi5. The
phosphorylated Whi5P is removed from the nucleus, thus
activating the transcription of two G1 cyclins (Cln1 and Cln2).
Cln1/2-Cdk promotes its own accumulation by phosphorylating
Whi5. When Cln1/2 is highly expressed, the majority of the Whi5
is phosphorylated and the cell can pass through the start point.
The mating pathway is a MAPK cascade that primarily arrests the
cell cycle prior to DNA replication. A pheromone (e.g. α-factor)
binds to a G protein-coupled receptor at the plasma membrane
(e.g. Ste2 for α-factor). The scaffold protein Ste5, which
physically interacts with all three kinases (Ste11, Ste7 and Fus3),
is necessary for the mating signalling. More detailed regulatory
mechanisms have been presented in previous studies [27–30].
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Fig. 10 Comparison of the average energy between the network with crosstalk and that without it over the time tf
a Solid line indicates the average energy needed to completely control the network with the three cross-pathway interactions, and dashed line represents the results of the network without
the three cross-pathway interactions
b Numerical results for the network with the three activation interactions between pathways and that without them
Average energy is the value by evaluating the natural logarithm. We assign each parameter a random value for the coupling matrix A of the system to calculate the average energy. In this
figure, the parameters are set as follows: a1,2 = 0.7447, a2,1 = 0.1890, a2,3 = 0.6868, a3,1 = 0.1835, a3,5 = 0.6443, a4,3 = 0.6256, a4,7 = 0.0811, a5,3 = 0.3786, a5,6 = 0.7757, a5,7 = 0.4868,
a6,5 = 0.4359, a6,7 = 0.3063, a7,4 = 0.5085, a7,8 = 0.5108, a33−d3 = 0.3685, d4 = 0.7802, d5 = 0.9294 and d6 = 0.4468
Fig. 9 shows the simplified core interaction network between the cell
cycle and the mating arrest pathways, which include eight nodes.

There are three cross-pathway interactions in this network,
including Cln1/2—|Far1act, Far1act—|Cln1/2 and Cln1/2→Ste5mem.
The linear dynamics of this network can be formulated as

ẋ1 = a1,2x2
ẋ2 = a2,1x1 + a2,3x3
ẋ3 = −a3,1x1 + a33x3 − a3,5x5 − d3x3
ẋ4 = a4,3x3 + a4,7x7 − d4x4
ẋ5 = −a5,3x3 + a5,6x6 + a5,7x7 − d5x5
ẋ6 = a6,5x5 + a6,7x7 − d6x6
ẋ7 = a7,4x5 + a7,8x8
ẋ8 = u(t)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

which can be written as

ẋ = Ax+ Bu (19)

where x = (x1, x2, …, xN)
T stands for the states of the nodes, and xi

(i = 1, 2,..., N) represents the concentration of Whi5, Whi5p, Cln1/
2, Ste5, Far1act, Farina, Ste5mem and α-factor. ai, j indicates the
interaction strength from node j to i, and di is the degradation rate.
A∈RN × N denotes the coupling matrix of the system, where the
diagonal element is −di or zero, with the exception of the third
element, which is a33− d3. u(t) is the control function, and B is
the control matrix.

Using either the MMT [9] or the maximum matching algorithm
[7], we identified that the minimum number of the driver node is 1
(α-factor) for the network without crosstalk interactions, which is
the same as the network with crosstalk interactions. For any
non-zero weights of ai,j and di, we found that the controllability
matrix is always fully ranked when controlling α-factor. In other
words, its controllability is independent of the detailed values of
the parameters, indicating that the actual network is strongly
structurally controllable. However, the rank of the controllability
matrix is 5 (not fully ranked) if the 3 cross-pathway interactions
IET Syst. Biol., pp. 1–8
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are not present. Therefore these crosstalk mechanisms contribute to
the controllability of the cell-fate decision network, which is
consistent with the findings that crosstalk is required to ensure a
successful switch between different cell fates [29, 30].

In addition, we selected two driver nodes, that is, Cln1/2 and
α-factor, which make the system completely controllable, to
calculate the average energy of the network according to (8). We
also assigned a random value to each parameter. Fig. 10a shows
that the control of the network requires less energy than the
network without the three cross-pathway interactions. Therefore
this example also indicates that the crosstalk between pathways
makes it easier to fully control the networks.

To further investigate how activation crosstalk shapes the energy
needed for controlling the networks, we assumed the interactions,
including Cln1/2 and Far1act, and Far1act and Cln1/2, to be
activation interactions. The numerical results revealed that the
network requires less energy than the network without the three
activation interactions when the network is completely controllable
(Fig. 10b). Altogether, these results indicate that crosstalk,
regardless of whether it is an inhibition interaction or an activation
interaction, makes the network easier to control.
6 Concluding remarks

In this paper, we used the theory of structure controllability and
system dynamics to analyse the controllability and control energy
of different signalling networks. The results indicated that the
structure and specific biological mechanisms of signalling
networks determine the controllability. In particular, the intricate
crosstalk is crucial for shaping the controllability of the signalling
networks. These data will provide new insights into the optimal
design of biological networks.

Owing to the ubiquity of non-linearity in nature, the control of
complex networked systems with non-linear dynamics is important
and cannot be ignored [33, 34]. Therefore the investigation of how
non-linearity affects the global controllability and control energy
will be the focus of future studies.
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