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a b s t r a c t

Type I interferon (IFN) signaling pathways play an essential role in the defense against early viral infections;

however, the diverse and intricate molecular mechanisms of virus-triggered type I IFN responses are still

poorly understood. In this study, we analyzed and compared two classes of models i.e., deterministic ordinary

differential equations (ODEs) and stochastic models to elucidate the dynamics and stochasticity of type I IFN

signaling pathways. Bifurcation analysis based on an ODE model reveals that the system exhibits a bistable

switch and a one-way switch at high or low levels when the strengths of the negative and positive feedbacks

are tuned. Furthermore, we compared the stochastic simulation results under the Master and Langevin

equations. Both of the stochastic equations generate the bistable switch phenomenon, and the distance

between two stable states are smaller than normal under the simulation of the Langevin equation. The

quantitative computations also show that a moderate ratio between positive and negative feedback strengths

is required to ensure a reliable switch between the different IFN concentrations that regulate the immune

response. Moreover, we propose a multi-state stochastic model based on the above deterministic model to

describe the multi-cellular system coupled with the diffusion of IFNs. The perturbation and inhibition analysis

showed that the positive feedback, as well as noises, has little effect on the stochastic expression of IFNs, but

the negative feedback of ISG56 on the activation of IRF7 has a great influence on IFN stochastic expression.

Together, these results reveal that positive feedback stabilizes IFN gene expression, and negative feedback

may be the main contribution to the stochastic expression of the IFN gene in the virus-triggered type I IFN

response. These findings will provide new insight into the molecular mechanisms of virus-triggered type I

IFN signaling pathways.

© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

The innate immune response is the first line of defense against

microbial infections in both insects and mammals [1–3]. The type-

I interferon (IFN) system provides a powerful defense against viral

infections in the early stage and has been widely studied in the recent

years [4,5].

Recently, the stochastic expression of IFNs in infected cells was re-

ported experimentally [6,7]. The biochemical studies suggested that

stochastic IFN induction may result from the cellular heterogeneity in

the expression of the viral sensor RIG-1 and activities of the limiting

components at every level of the virus induction process, including vi-

ral replication and expression, the sensing of viral RNA by host factors

and the levels of activated transcription factors in the virus-triggered
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ype-I IFN signaling pathways [8,9]. Although several quantitative

tudies have simulated the dynamics of these biological processes

t the cell-population level [10–14] and considered the influences of

ell-to-cell variability [15], the detailed stochastic mechanism under-

ying the antiviral response remains poorly understood due to the

iverse and intricate mechanisms.

Systematic analysis of the innate immune response has provided

mportant insights into the mechanism of maintaining the delicate

alance between resistance to infection and viral diseases [16,17]. In

ur previous work, we developed an ordinary-differential-equation

ODE) model and a simplified delayed model of the virus-triggered

ype I IFN signaling pathways, that are mainly focused on qualitative

ynamical analysis of these signaling pathways [18–20]. However, the

etailed feedback regulatory mechanisms, as well as the stochasticity

nderlying the signaling transmission and gene expression, have not

een considered.

In this study, we first developed a simplified deterministic com-

utational model of the biochemical pathways that regulate the

http://dx.doi.org/10.1016/j.mbs.2015.04.003
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Fig. 1. The workflow of this study.

Fig. 2. (Color online.) A simplified reaction scheme considered in the mathematical

model. The core transcriptional circuit underlying the virus-triggered type I IFN signal-

ing pathway.
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ntiviral program, with particular emphasis on the quantitative bifur-

ation analysis of the system-level mechanisms underlying this pro-

ess. Next, we performed stochastic simulation of the system based

n the concern of noise underlying the dynamic antiviral processes

sing the Master and Langevin equations.

To gain insight into the complicated dynamic processes at the

ulti-cell level and the stochastic expression mechanism underly-

ng the innate immune system, we built a new multi-state stochas-

ic model based on the core deterministic model and conducted

erturbation and inhibition analysis. These models and simulation

esults would be used to investigate the inner mechanisms for

he innate immune response. The entire workflow of this study is

epicted in Fig. 1.

. Models and methods

.1. The core transcriptional circuit underlying the virus-triggered

ype I IFN signaling pathway

In response to viral infection, dsRNA interacts with the RNA-

elicase domain of RIG-1 or MAD5 that serves as cytoplasmic viral

NA sensors [21,22]. The viral RNA sensors transmit signals to the
ownstream adaptor protein VISA (also known as IPS-1, MAVS, and

ardif). The adaptor protein VISA interacts with MITA and then ac-

ivates TBK1. Activated TBK1 leads to the phosphorylation of IFN-

egulatory factor 3 (IRF3) and IRF7. The activated IRF3 and IRF7 form

omo-or heterodimers and are translocated to the nucleus to trigger

FN mRNA induction, leading to the production of type I IFNs [23–26].

ype I IFNs induce the transcription of IFN-stimulated gene factor

(ISGF3) [27,28], which translocates to the nucleus and induces the

ranscription of the IRF7 and ISG56 genes. The newly synthesized IRF7

eads to the expression of the IFNβ gene to form an IFNβ-IRF7-IFNβ
ositive feedback loop and accelerate the induction of type I IFN genes

uring the host antiviral response [29,30]. The induced ISG56 disrupts

he interaction of MITA with VISA or TBK1, leading to the inhibition

f virus-induced IRF activation, IFNβ expression and cellular antiviral

esponses [31]. The IFN-induced antiviral components inhibit virus

eplication by targeting the viral RNA. In this study, the core tran-

criptional circuit underlying the virus-triggered type I IFN signaling

athway is depicted in Fig. 2 and involves four main components:

irus, IRF7, IFNβ , and ISG56.

.2. A deterministic ODE model and non dimensionalization

Based on the simplified reaction diagram shown in Fig. 2, we con-

idered the core circuit that consists of coupled double-negative feed-

ack loops and a positive feedback loop involving four main compo-

ents Virus, IRF7p, IFNβ and ISG56. The model of circuit network is

ased on the previous model developed by Zhang et al. [19]. In mouse

ells, NF-κB is required only at the early stage when the level of acti-

ated IRF3 is low but is not required for the maximum levels of IFNβ
ate during induction [32]. The main contribution of the type I IFN

ntiviral system is that IRF7– IFN is involved in positive feedback, and

he full induction of type I IFN genes is required for the IRF7 positive

eedback [30,31]. To consider the main features of the system, in this

tudy, we selected four main components virus, IRF7, IFNβ , and ISG56

n the circuit. The detailed descriptions of the mathematical modeling

re given as follows:

Generally, the concentration of reactant Xi that changes over time

an be described by an ordinary differential equation (ODE) [33].

d[Xi]

dt
=

∑
viproduction −

∑
viconsumption

here viproduction and viconsumption represent the production rate and

onsumption rate of reactant Xi, respectively. The derivation of these

unctions occurs according to the following rules:
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Table 1

The definitions and values of all parameters in ODE model.

Processes Parameters Values Reference

Virus replication k1 0.088 h−1 [20]

IRF7 induction k2 0.1482 h−1 Estimated

ISG56 inhibit activation of IRF7 k3 4.663 h−1 Estimated

IRF7 induction k4 0.52 h−1 [19]

IFNβ induction k5 0.8774 h−1 [20]

ISG56 induction k6 0.205 h−1 [19]

Virus degradation d1 0.0686 h−1 Estimated

IRF7 degradation d2 0.62 h−1 [19]

IFNβ degradation d3 0.1897 h−1 [19]

ISG56 degradation d4 0.738 h−1 Estimated

associate constant b1 2.798 Estimated

associate constant b2 3.17 Estimated

activation constant b3 0.782 Estimated

Hill coefficient n1 3 [19,36]

Hill coefficient n2 2 [19]

Hill coefficient n3 2 [19]

Table 2

The propensity functions related to the kinetic reactions and the number of molecules

in the system is controlled by the system size �.

No Reaction Propensity function

1 Virus k1Virus/(1+b1IFN−βn1 /(�n1 ))

2 Virus d1Virus

3 IRF7p k2Virus(1−(IRF7p/�))−k3�ISG56n2 /(�n2 +b2 ISG56n2 )+k4IFNβ

4 IRF7p d2IRF7p

5 IFNβ k5�IRF7pn3 /((b3�)n3 +IRF7pn3 )

6 IFNβ d3IFNβ

7 ISG56 k6IFNβ

8 ISG56 d4ISG56
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(1) The dynamics of the activation, phosphorylation and degrada-

tion of the four components following the law of mass action

i.e., the activation rates and degradation rates are linearly pro-

portional to their concentrations [34].

(2) The positive and negative feedbacks are represented using Hill

functions [35].

The mathematical model of the core circuit network is developed

as follows:

d[V]

dt
= k1[V]

1+b1[IFNβ]
n1

− d1[V] (1)

d[IRF7p]o

dt
= k2[V]([IRF7total] − [IRF7p]o)− ko

3

[ISG56]
n2

1+b2[ISG56]
n2

+ ko
4[IFNβ] − do

2[IRF7p]o (2)

d[IFNβ]

dt
= ko

5

([IRF7p]o)n3

(bo
3)

n3 + ([IRF7p]o)n3

− d3[IFNβ] (3)

d[ISG56]

dt
= k6[IFNβ] − d4[ISG56] (4)

In Eq. (1), the replication of viral RNA is assumed to be linearly

proportional to their concentrations based on the law of mass action.

The negative feedback from IFNβ to viral RNA uses Hill equations. In

Eq. (2), we assume that the sum of inactive IRF7 and phosphorylated

IRF7 is a constant. The inactivated IRF7 is phosphorylated by the viral

RNA, and the activation by IFNβ follows the law of mass action (the

first and third terms). The negative feedback of ISG56 is described us-

ing the Hill function (the second term). In Eq. (3), the positive feedback

of IRF7p is represented by the Hill function (the first term). The last

term in all of the equations represents the degradation rate, following

the law of mass action.

To make the analysis more convenient, we nondimensionalized

the model by normalizing the total amount of IRF7 and made the

following substitutions.

[IRF7p] = [IRF7p]o/[IRF7total], k3 = ko
3/[IRF7total] (5)

k4 = ko
4/[IRF7total], b3 = bo

3/[IRF7total] (6)

where the parameters k0
3, k0

4, b0
3 and variable [IRF7p]0 correspond to

the initial model. All of the simulations are based on the following

non-dimensional equations.

d[V]

dt
= k1[V]

1 + b1[IFNβ]
n1

− d1[V] (7)

d[IRF7p]

dt
= k2[V](1 − [IRF7p])− k3

[ISG56]
n2

1 + b2[ISG56]
n2

+ k4[IFNβ] − d2[IRF7p] (8)

d[IFNβ]

dt
= k5

[IRF7p]
n3

b3
n3 + [IRF7p]n3

− d3[IFNβ] (9)

d[ISG56]

dt
= k6[IFNβ] − d4[ISG56] (10)

The model includes 4 variables and 13 parameters. Some of the di-

mensionless parameters are set similar to the values reported in

our previous work [18–20], and the other parameters are obtained

through optimization of the difference between the simulation of

the mathematical model and biological experimental data by the hy-

brid genetic algorithm proposed in [19]. The time series experimental

dataset we used is that using vesicular stomatitis virus-infected MEFs
btained from our previous work [20]. The parameters obtained are

hown in Table 1.

To show the reasonability of the proposed mathematical model,

e simulate two types of experimental data obtained from [31]. One

s the time series of Western Blot data for ISG56 and another is the

nhibitory effects of ISG56 on the dynamics of virus-induced IFNβ sig-

aling. Fig. 3 demonstrates that the simulation results are consistent

ith the experimental data. Therefore, the presented model could

eflect the main characteristics of the virus-induced innate immune

ystem we considered.

.3. The Master equations and simulations

We supposed that the state of the system is X(t0) = x0, and defined

he conditional probability density function P(x, t|x0, t0), which is the

robability of the system state satisfying X(t) = x at time t.

The master equation was built according to the following proba-

ility equation:

∂

∂t
P(x, t|x0, t0)

=
8∑

j=1

aj(x − vj)P(x − vj, t|x0, t0)− aj(x)P(x, t|x0, t0)] (11)

here aj is the propensity function corresponding to the chemical

eaction channel j, and vj is the state-change vector when reaction j

ccurred.

Following the modeling approaches for stochastic models [37],

ll of the propensity functions related to the 8 reactions in the ODE

odel are listed in Table 2, and parameters were set to be the same

s those in Table 1. The stochastic simulations were performed using

he Gillespie algorithm [38]. C. Rao et al. [39] have shown that quasi-

teady state approximations (QSSA) remain valid in the stochastic

ase, but recent work [40–43] has shown that the stochastic QSSA

or the Michaelis– Menten reaction is valid only in a subset of the
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Fig. 3. (Color online.) Comparison between the numerical simulation and experimental results [31]. The left subfigure is the simulation results of ISG56 activity, and the figure

below is the Western blot array; the right subfigure shows the inhibitory effects of ISG56 on the IFNβ .
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iological parameter space and Hill exponents larger than one. In our

imulation, the trend of stochastic simulation was the same as that of

he deterministic equation when the system size � is set to 1000.

.4. The Langevin equations and simulations

The Langevin equations were built as follows.

V](t + dt) = [V](t)+ k1[V]

1+b1[IFNβ]
n1

− d1[V]

+
√

k1[V]

1+b1[IFNβ]
n1

ζ1(t)(dt)1/2 (12)

−
√

d1[V]ζ2(t)(dt)1/2

IRF7p](t + dt) = [IRF7p](t)+ k2[V](1 − [IRF7p])

− k3
[ISG56]

n2

1+b2[ISG56]
n2

+ k4[IFNβ] (13)

d2[IRF7p]

+
⎛
⎝

√
k2[V](1 − [IRF7p])− k3

[ISG56]
n2

1+b2[ISG56]
n2

+ k4[IFNβ]

⎞
⎠

× ζ3(t)(dt)1/2

−
√

d2[IRF7p]ζ4(t)(dt)1/2

[IFNβ](t + dt) = [IFNβ](t)+ k5
[IRF7p]

n3

bn3

3 + [IRF7p]n3
− d3[IFNβ]

(14)

+
√

k5
[IRF7p]

n3

bn3

3 + [IRF7p]n3
ζ5(t)(dt)1/2 −

√
d3[IFNβ]ζ6(t)(dt)1/2

ISG56](t + dt) = [ISG56](t)+ k6[IFNβ] − d4[ISG56]

+
√

k6[IFNβ]ζ7(t)(dt)1/2 (15)

−
√

d4[ISG56]ζ8(t)(dt)1/2

Where the ζ i(t) is the Gaussian white noises with 〈ζ i(t)〉 =0

nd 〈ζi(t)ζj(t
′
)〉 = δijδ(t − t

′
), � is the system size. The simulation
f Langevin equations is performed using the Euler– Maruyama algo-

ithm provided in [44].

.5. The bifurcation analysis for a single parameter and two parameters

The single parameter bifurcation diagrams are computed by AUTO

s incorporated in XPPAUT [45] and oscill8 [46].

We proposed a new method for calculating the bifurcation for two

arameters in three dimensions. For a given system, we supposed that

he system has impulsive dynamical behavior due to abrupt jumps at

ertain instances during the evolving process, and applied the bifur-

ation theory proposed in [47].

In the simulation, we captured the Poincaré cross section accord-

ng to the phase diagram of the system and collected the last points of

he corresponding variables at each considered repeated time inter-

al by varying the bifurcation parameters at biologically reasonable

ntervals. The detailed pseudocode is shown as follows:

Initialize the variables of steady states(SS) for the system.

for the first parameter that varies in the biologically reasonable

interval. do

for the second parameter that varies in the biologically reason-

able interval. do

Set the initial value for the variables.

Set the time span for the simulations Tspan=[0:step:n*period],

step=0.1; period=2*pi.

the steady states of the system.

Set the obtained steady states as the initial value.

for i=1:m do

Set the time span Tspan=[(i+n-1)*period:step:(i+n)*

period];

Obtain the steady state of the system and collect the steady

states (SS) under the two corresponding parameters.

Set the obtained steady states as the initial value.

end for

end for

end for

To obtain relatively correct ultimate steady states in our simula-

ion, we set the appropriate simulation period. The parameter n is set

o 60, and the parameter m is set to 140. All of the other parameters

re set to be the same as in the Table 1 in the simulations. The mesh

ifurcation diagrams were obtained by plotting the parameter inter-

al against the corresponding collect steady state of the system. The

esh bifurcation diagrams of two parameters in three dimensions

aptured the main dynamic feature of the system.



16 W. Zhang et al. / Mathematical Biosciences 265 (2015) 12–27

a

f

t

b

v

i

t

a

W

(

p

h

p

B

t

b

h

f

t

e

b

m

n

i

i

b

r

d

s

u

M

t

t

f

t

t

a

d

d

s

2.6. Stochastic simulations of the multi-cellular coupled model

During the simulations, each cell was simulated as an independent

agent. The main components such as Virus, IRF7 and ISG56 in each

cell accurately reacted to changes in its local environment affected

by the diffusion of the IFN gene. Extracellular IFN was considered to

be rapidly diffusing in cell culture and was iterated with the Euler

method [48]. The parameters and propensity functions for a single

cell were set to be the same as in the Tables 1 and 2, respectively. We

assumed that all 1000 infected cells were in a well-mixed system with

a fixed system size �, and all of the genes in the cells were inactive

initially.

Assuming there are N cells, each cell corresponds to M different

states, and each state has R reaction channels. The simulation pro-

cedure of a multi-state cell system using the Gillespie algorithm is

shown as follows:

Algorithm 1 Gillespie algorithm for multi-cellular coupled model.

1. Initialize all cells in each state X(N, R) = 0, the cell state change

variable CS = 0, the molecule state change vector V , and the virus

initial amount; set the time t = 0.

2. Initially, assume that each cell starts from state one X(N, 1), com-

pute the propensity function for each cell[A1(x), A2(x), . . . , AN(x)],
Ai = [ai1(x), ai2(x), . . . , aiR(x)] (i = 1, . . . , N),and add the reaction

constants a0 = ∑N
i=1

∑R
j=1 aij(x).

3. Generate a random number r1 in (0, 1), determine the time in-

terval τ when the next reaction occurs by τ = (1/a0)ln(1/r1).
4. Generate a random number r2 in (0, 1), determine the occurred

reaction channel i as well as the cell j using the following for-

mulas: b = reshape(X, 1, N ∗ R), 1
a0

∑s−1
k=1

bk < r2 < 1
a0

∑s
k=1 bk, i =

mod(s, R), j = [s/R].

5. Update the cell state change variable CS(j) = CS(j)+ CS(i), the

number of molecules in the corresponding cell X(j, i) = X(j, i)+ Vji,

the time t = t + τ and extracellular IFN.

6. Return to step 2 unless the simulation time has been exceeded

or the number of reactants is zero.

3. Results

3.1. Bifurcation dynamics of positive and negative feedbacks

Feedback loops in signaling pathways play important roles in de-

termining system dynamics. Thus, it is important to analyze the role
Fig. 4. (Color online.) The bifurcation diagrams of positive feedback strength (k4) and negati

different negative feedback strengths (k3). (B) Bifurcation diagram of negative feedback stren

states, and dashed lines denote unstable steady states. The points corresponding to red circle

All of the other parameters are set to be the same as in Table 1.
nd impact of the positive and negative feedback loops emanating

rom virus-triggered innate immune signaling pathways.

The two subfigures of the bifurcation diagrams in Fig. 4 as a func-

ion of negative and positive feedback strengths showed that the

istable phenomenon exists when the positive feedback strength k4

aries in the region [0.45, 1] and negative feedback strength k3 falls

n [4.663 10.663] (Fig. 4A). The system undergoes the transition from

he monostability of a high level to a bistable switch and then to relax-

tion oscillation with an increase in the negative feedback strength.

hen the negative feedback strength k3 is decreased to the threshold

k3 = 2.2) or increased to the threshold (k3 > 10.663), the bistable

henomenon disappears, and the expression of IFNβ remains at a

igh level. When the negative feedback strength is larger than ap-

roximately 10.663, the system exhibits oscillatory behavior (Fig. 4B).

y increasing the strength of positive feedback strength k4, the sys-

em undergoes a transition from monostability at a lower level to a

istable switch and then to monostability at a higher level. IFNβ ex-

ibits a lower or higher level with steady states when the positive

eedback strength is smaller than 0.45 or larger than 1.2, respectively.

The results shown that the system could switch from a high level

o a low level by impairing the positive feedback strength only, while

nhancement of the negative feedback can tune the system from

istability to oscillation. These findings reveal the possible biological

echanisms for irreversible bistability which will lead to over immu-

ity (high state of IFNβ) or immunodeficiency (lower state of IFNβ)

n the virus-triggered innate immune response [49,50].

As the stochastic fluctuations have been proven to exist in the

nduction of IFNβ in a real cell environment, stochastic switching

etween different states was considered. To compare the simulation

esults between the Master equation and Langevin equation, we ran-

omly chose the initial value of the model in [0, 1], and performed

tochastic simulations for the Master equation and Langevin equation

sing the Gillespie algorithm and Euler– Maruyama algorithm (See

odels and Methods in 2.3 and 2.4), respectively.

We obtained the ultimate value as the steady state of the system

hrough dividing the system size by the molecular numbers. Stochas-

ic switching between the two stable steady states occurred (Fig. 5)

or both stochastic equations. For the stochastic simulation results of

he Langevin equation, the steady state is bound by a deterministic

erm (the upper steady state is lower than the deterministic term

nd the lower steady state is higher than the deterministic term). The

istance between the two different states is smaller than normal un-

er the Langevin equation. There is almost no bistability region of the

tochastic simulation, and few cases corresponding to the mediate
ve feedback strength (k3). (A) Bifurcation diagram of positive feedback strength (k4) at

gth (k3) at different positive feedback strengths (k4). Solid lines denote stable steady

s and blue stars represent the Saddle nodes and Hopf bifurcation nodes, respectively.
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Fig. 5. (Color online.) The bifurcation diagrams of IFNβ concerning the positive feedback strength k4 and negative feedback strength k3 for comparison between the deterministic

and the stochastic models. (A) and (B) compare the bistability of the ODE model with that of the Master equations for parameters k4 and k3, respectively; (C) and (D) compare the

bistability of the ODE model with that of the Langevin equations for parameters k4 and k3, respectively. The black line corresponds to deterministic simulation, the green star and

green circle correspond to the stochastic simulation results of the Master equation and Langevin equation, respectively. All of the other parameters are set to be the same as in

Table 1.
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tate when the parameter k3 and k4 fell into the unsteady bistability

ange of the deterministic model. Although the steady state of zero

as been neglected in the analysis of the deterministic case, it also

xists in the stochastic case.

To compare the relative impact of the negative feedback strength

3 and positive feedback strength k4 on the expression of the IFNβ
ene, two parameter bifurcations were analyzed and are shown in

Fig. 6A and B). The IFNβ displays a low or high steady state when

he positive feedback strength varies in the range [0.3, 2]. The results

how that the bistable phenomenon of IFNβ appears when k3 and

4 are set at a certain value. To characterize the dynamical features

f the system more clearly, the bifurcation diagram of IFNβ for the

atio between k3 and k4 as well as k4 was analyzed (Fig. 6C and D).

bviously, the Virus and IFNβ dramatically changed when varying

he two parameters. The results show that the bistable phenomenon

ppears when the proportion of the k3 and k4 maintains a certain

ange.

To further depict the dynamics of the system, we made the bifur-

ations of IFNβ for the ratio between k3 and k4 under four different

tates of positive feedback strength k4 as shown in Fig. A.15.

In the first state, when the positive strength k4 is approximately

.52, with an increase in the ratio of k3 and k4, the system undergoes

bistable switch from a high level to a low level and then exhibit

scillatory behavior; in the second state, when the positive feed-

ack strength k4 is approximately 0.95, the system runs into damped

scillation when the negative feedback strength is larger than the

hreshold. To exemplify this, we added the bifurcation diagram of k3

sing oscill8 software when the k4 is set to 0.95 in the Appendix A

Fig. A.16). We can see that the system exhibits bistability between

he two saddle nodes (SNs), and the system displays oscillation
etween the two Hopf bifurcation nodes (HB). In the third state, when

he positive feedback strength k4 is approximately 1.05, the system

isplays relaxation oscillation when the negative feedback strength

s larger than the threshold; in the fourth state, when the positive

eedback strength k4 is approximately 1.5, the system undergoes a

ransition from monostability of a high level to oscillation and then

oward monostability of a high level with an increase of k3. The de-

ailed explanations of negative feedback modulating the amplitude

nd frequency of the oscillations are listed in the Appendix B, and the

umerical result is presented in Fig. B.17.

The bifurcation analysis results show that the IFNβ could switch

etween two different steady states when the positive feedback is

elatively small. If the positive feedback strength is sufficiently large,

or example, when k4 is larger than 1.5 the IFNβ exhibits oscillatory

ehavior in a small range and maintains a high steady state indepen-

ent of the negative strength k3. Under this condition, the system may

un into an over immunity state, and the infected tissue undergoes

erious inflammatory and apoptosis.

The positive feedback of IFNβ induced by IRF7 in cellular antiviral

efense is essential for the late phase of type I IFN induction, which

roduces a large amount of antiviral proteins to inhibit the replica-

ion of virus and eliminate it. However, the system cannot switch

rom the high state when the negative feedback is not sufficient to

mpair type I IFN induction, and the overproduction of type I IFNs will

esult in over immunity. Altogether, our results suggest that the sys-

em is tunable by balancing the strength of the positive feedback and

egative feedback. Thus, a moderate ratio between the positive and

egative feedback strengths is required to ensure a reliable switch be-

ween different IFN concentrations to regulate the immune response.

hese findings also agree with the theoretical results in previous



18 W. Zhang et al. / Mathematical Biosciences 265 (2015) 12–27

Fig. 6. (Color online.) The bifurcation diagrams of the steady states for Virus and IFNβ according to two parameters. (A, B) The bifurcation diagrams of negative feedback strength

k3 and positive feedback strength k4 for Virus and IFNβ , respectively. (C, D) The bifurcation diagrams of positive feedback strength k4 and the ratio between k3 and k4 for Virus and

IFNβ , respectively. All of the other parameters are set to be the same as in Table 1.

Fig. 7. (Color online.) The bifurcation diagrams of IFNβ as a function of k5. (A) Thick and dashed blue lines correspond to stable and unstable steady states, respectively. The red and

green circles denote saddle nodes (SNs) and Hopf bifurcation nodes (HBs), respectively. The open circles correspond to minima and maxima of the limit cycles. (B) The black line

correspond to the simulation of the ODE equation, the red star and green circle are correspond to the stochastic simulation results of the Master equation and Langevin equation,

respectively. All of the other parameters are set to be the same as in Table 1.
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Fig. 8. (Color online.) The distribution diagrams of IFNβ under different values of k5 for the Langevin and Master Equation. The distribution of IFNβ switching from the low to the

high steady state by varying the parameters of k5. (A) The subfigures are the simulation results from the Langevin equation. (B) The simulation results from the Master equation.

The magenta line and red line correspond to the low and high steady states of the deterministic model, respectively. All of the other parameters are set to be the same as in Table 1.

Fig. 9. (Color online.) The dynamic behavior of the system when the parameter k5 is set to 0.77. (A) and (B) correspond to deterministic simulation. (C) and (D) correspond to

stochastic simulation through the Gillespie algorithm. All of the other parameters are set to be the same as in Table 1.
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Fig. 10. (Color online.) The diagram of the state transitions of a single cell. The model of 16 states considered here describes a population of individual cells that contain the

core transcriptional circuit coupled to double-negative feedback loops and a positive feedback loop involving four main components virus, IRF7, IFNs, ISG56, as well as cell

communication via secreted IFN. The secreted IFNβ acts on the secreted cell itself or on a neighboring cell in an autocrine and paracrine manner [14].
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studies [42,51]. Furthermore, the detailed description and analysis

for the tenability of the dynamic behaviors between the two feed-

back strengths are presented in Appendix C.

3.2. The appropriate induction rate of IFNβ plays an important role

in mediating the innate immune response

We explored the effects of IRF7 in the induction of IFNβ and

the dependence of the steady state of IFNβ on its induction rate

k5. In the bifurcation of the diagram for the deterministic model

(Fig. 7A), the steady state level of IFNβ can exhibit four distinct be-

haviors with an increase of k5. For 0 < k5 < 0.75, there is a single

low-level steady state. When 0.75 < k5 < 0.82, a limit cycle coexists

with an unstable steady state. For 0.82 < k5 < 0.95, there exists one

stable states. When k5 > 0.95, bistability occurred.

To further investigate the bistable switch under the stochastic

condition, we used two stochastic models to perform the stochastic

simulations using the Gillespie algorithm and Euler– Maruyama al-

gorithm when the parameter k5 falls in the bistability range of the

deterministic case [0.95, 1.33]. The simulation result (Fig. 7B) demon-

strates that the system has a stochastic switch between two stable
teady states, and the steady state values do not change significantly

hen the intrinsic noise is characterized by the Master equation.

owever, the distance between the two stable steady states becomes

maller when simulating the Langevin equation.

Since noise plays an important role in the bistable system, we

imulate the distribution of IFNβ in a collection of 10,000 cells under

ifferent values of k5 for the Langevin equation and Master equation.

ig. 8 gives the distribution diagram of IFNβ switching from unimodal

istribution of the low state (k5 = 0.9) via the bimodal distribution

n the bistable region (k5 = 1.15) and then to the high state with

nimodal distribution(k5 = 1.4) for the stochastic models by varying

he parameter k5. From the distribution histogram of IFNβ in the two

tochastic models and deterministic model, we also statistically ver-

fied the conclusion that the distance between the two stable steady

tates in the Langevin model is smaller than that using the determin-

stic equation. Interestingly, the Master equation model maintains the

table steady states of the deterministic model.

The system exhibits oscillation when the induction rate of IFNβ k5

s set to 0.77 (Fig. 9A and B), but the time series of IFNβ , ISG56 and IRF7

uns into nonstationary oscillation under the stochastic simulation

Fig. 9C and D).
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Fig. 11. (Color online.) Comparison between the simulation and experiment results of

percentage of the IFNβ producing cells at different times after viral infection for the

multi-cellular coupled system. The solid line is the simulation result, and the dotted

line with the errorbar is the experimental result of Sendai virus infection of mouse MEF

cell line originating from [9].
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To measure the fluctuation of IFNβ and ISG56, we subtracted

he deterministic simulation value from the corresponding stochastic

imulation results and computed the standard deviation of the fluctu-

tion values of IFNβ and ISG56, respectively. The result (subfigure in

ig. 9C) indicates that the noise in the innate immune system affects

he expression of IFN more than the induction of ISG56, a finding that

s supported by the recent experimental findings that the expression

f IFN is stochastic, while the IFN-inducible antiviral genes are not

tochastically expressed [9].

.3. Stochastic simulation of the multi-cellular coupled system

In real organisms, the paracrine cell-to-cell communication is an

fficient mechanism to protect host cells from viral infection. Ulfert

and et al. [52] proposed a multi-cell mathematical model and re-

ealed that a reliable antiviral response can be achieved through

owerful paracrine propagation of the signal. Although the simu-

ation results matched the experimental data of Newcastle Disease
ig. 12. (Color online.) Simulation results of the percentage of IFNβ expression and IFNβ acti

trength k4 (C). All of the other parameters are set to be the same as in Table 1. For the subfig
irus-infected murine fibroblasts, they did not consider the negative

eedback on the induction of IRF7 by ISG56; the propensity functions

hat they described were based on constants, and the virus induction

f RIG and IFN were two independent parts. Therefore, it may not re-

ect the real protein fluctuations in the virus-triggered multi-cellular

ystem.

In this study, we used the propensities defined in the determinis-

ic equations and modeled the virus-triggered IFNβ induction in the

ulti-cellular system and iterated in parallel at the single-cell level.

or each cell, the virus-triggered IFNβ gene induction was modeled as

multi-step process (Fig. 10), which is supported by the experimen-

al observations in the published study [53]. A detailed description is

resented in Appendix E.

The simulated percentage of IFN-expressing cells and compari-

on with experimental results are shown in Fig. 11. (The experimen-

al data of Zhao et al. [9] exhibits the percentage of IFNβ expres-

ion in different mouse or human cells (L929 cells, MEF cells, RAW

ells, primary foreskin fibroblast cells, MG63 cells and 293T cells)

nfected by the Sendai virus. Although the percentage of expressing

ells differs between different cell lines, the trend is almost the same,

nd the maximal percentage did not exceed 20%). The simulation

esults qualitatively reproduced the experimental observations, in-

icating that the multi-state stochastic model we used is valid and

ffective.

.4. The effects of the positive and negative feedback strength

n the percentage of IFNβ expressing cells

Some experimental results showed that the cell-to-cell hetero-

eneity was a pervasive feature of the IFN system and can arise

ot only from the cell’s intrinsic stochasticity occurring in the

iochemical reactions but also from extrinsic factors such as dif-

erences in cell-cycle stage or cellular environment, which can be

eflected in the kinetic parameters [54–56]. Here, we assumed that

he intrinsic noise is determined by the fluctuations generated by the

ystem size, and the extrinsic noise is defined as the fluctuations and

ariability in the kinetic parameters, particularly the positive feed-

ack strength k4 and negative feedback strength k3 associated with

he autocrine and paracrine of IFNβ .

To determine which mechanism is the main contributor of the

FNβ stochastic expression in the virus-triggered innate immune

ystem, we simulated the multi-cellular coupled model by varying

he system size �, the positive feedback strength k4 and negative

eedback k3 (See Section 2.6 for the detailed method). The simula-

ion results in Fig. 12 shows that the system size, negative feedback

trength k3 as well as positive feedback strength k4 slightly affect the
vity under different � size (A), negative feedback strength k3 (B) and positive feedback

ures B and C, the � is set to 1000.
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Fig. 13. (Color online.) Simulation results for the negative and positive feedback inhi-

bition. The percentage of IFNβ-expressing cells without negative or positive feedback

compared with the experimental data.

l

f

a

t

n

n

s

l

s

m

p

o

J

S

s

t

m

d

f

e

b

d

l

o

u

p

r

m

t

a

s

m

a

t

i

r

a

5

M

p

t

e

s

s

t

c

t

c

m

g

T

l

r

v

o

f

b

s

percentage of IFNβ expression, suggesting that these may not be the

main sources of the stochastic expression mechanism.

3.5. Negative feedback inhibition greatly affects the percentage

of IFNβ expressing cells

Furthermore, to investigate the mechanism of stochastic expres-

sion, we simulated the system under two extreme conditions in which

the negative and positive feedbacks are inhibited, respectively. Sim-

ulation results (Fig. 13) show that, when the negative feedback inhi-

bition is presented, the percentage of IFNβ expressing cells increased

sharply with time, the maximum proportion is larger than that in

the normal state, and the time point corresponding to the maximum

percentage was shorter than that in the normal state. This result in-

dicates that the negative feedback on the activation of IRF7 may be

the main source of the stochastic expression of IFNβ , a finding that

is supported by the experimental findings that the stochastic expres-

sion of the IFN gene is a consequence of cell-to-cell differences in

limiting the cellular components required for IFN induction [8], and

the majority of cells translocating IRF7 to the nucleus also activated

the IFNβ promoter [9].

On the one hand, the negative feedback of ISG56 on the activa-

tion of IRF7 limits the percentage of IFNβ that virus-infected cells

can produce. The secreted IFNβ acts on cells that infected but are

not producing IFNβ in the paracrine system and triggers an antiviral

immune response by the expression of IFN-stimulated genes (ISGs).

The produced intermediate levels of IFNβ are sufficient to block vi-

ral propagation. On the other hand, the negative feedback buffers

the sharp increase in IFNβ-expressing cells, contributing to the even

distribution of IFNβ , and thus avoiding over-expression of IFNβ in

infected cells.

4. Discussions

Previous studies have concentrated on the analysis of a determin-

istic model or stochastic model independently. In this study, we pro-

vided a quantitative link between earlier unobservable signaling dy-

namics and type I IFN responses by unifying the deterministic model

with the multi-cellular coupled stochastic multi-state model. For the

deterministic model, the positive feedback guarantees an essential

gradient for the bistable switch and shapes the diverse dynamical be-

havior of IFNβ coordinately with negative feedback. However, for the

multi-state stochastic model, the noise and positive feedback effect is
ess in the stochastic expression pattern of IFNβ , while the negative

eedback through ISG56 on the inhibition of activation of IRF7 medi-

tes the stochastic expression of IFNβ as an efficient mechanism for

he antiviral response.

Earlier research suggested that noise has great effects on the dy-

amic activity of the system [57,58]. In our study, the minor effects of

oises on the system mainly refer to the characteristics of the system

uch as the bistable phenomenon of the rate equation exhibited.

Due to the complexity of interlinked regulatory networks under-

ying the virus- triggered innate immune response, we considered a

implified regulatory module in this study. The model captured the

ain properties of the innate immune system. However, more com-

rehensive model is needed to interpret the details of the mechanism

f the innate immune response. For example, the IFN induced the

anus kinase/signal transducer and activator of transcription (JAK–

TAT) signaling pathway involving some feedback mechanisms [10]

hould be incorporated into the mathematical model. In addition,

he proposed multi-cell coupled multi-state stochastic model needs

uch computing power for stochastic simulation. It is important to

evelop a more efficient algorithm for simulating this model in a

urther study.

Another major issue in modeling study is the accuracy of math-

matical models. The current trend in computational modeling of

iochemical systems is to construct more and more mechanistically

etailed and thus complex models. However, the complexity of bio-

ogical networks and lack of experimental data have put a limitation

n the complexity of mathematical models. In addition to the widely

sed Michaelis– Menten kinetics and Hill functions, a number of ap-

roaches have been designed to reduce the complexity of biochemical

eaction networks [59–62]. However, the cost of such simplification

ay be the accuracy of developed model. Recent research has shown

hat the conclusion from a simplified model may be conditional to the

ssumption of the model [41,43]. A similar case is the development of

tochastic model or multi-scale model based on the developed deter-

inistic model [37,39] (including this research work). Recent works

lso show that additional conditions should be applied if we hope

o get precise simulation results [40,42]. Thus more research work

s strongly needed to investigate the functions of noise and genetic

egulations under the proper and correct conditions. All these issues

re potential topics of our future research.

. Conclusions

In this study, we proposed two stochastic models (the chemical

aster equation and Langevin equations), and analyzed and com-

ared two classes of models—i.e., deterministic ordinary differen-

ial equations (ODEs) and stochastic models (Master and Langevin

quations)—to elucidate the dynamics and stochasticity in type I IFN

ignaling pathways. The simulation results show that the stochastic

ystem displays a stable bistable switch, and the distance between the

wo stable steady states becomes smaller for the Langevin equation

haracterized system.

In addition, the coupled feedback loops enable the antiviral sys-

ems to produce perfect responses to virus infection, and a sustained

onstant signal input stimulation that produces a bistable switch

ight designate a decision-making phase where the cell can inte-

rate various other stimuli before committing to a biological decision.

he results suggest that the coupled positive and negative feedback

oops form essential signal transduction modules in cellular antivi-

al innate immune signaling systems, which coordinately shape the

irus-triggered type I IFNs response and may offer diverse regulating

ptions.

To reveal the mechanism of IFNβ stochastic expression in in-

ected cells,we further constructed a stochastic multi-cellular model

ased on the core deterministic model. Through extensive stochastic

imulation and analysis, we found that the perturbation of positive
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Fig. A15. (Color online.) The bifurcation diagram of IFNβ steady state when varying

the ratio of k3 and k4 under four different positive feedback strength, while the positive

feedback is increased from 0.52, 0.95, 1.05 and 1.5 corresponding to A, B, C and D,

respectively. All of the other parameters are set to be the same as in Table 1.
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eedback regulation, as well as negative feedback strength and system

ize has a less effect on the stochastic expression of IFNβ; however,

he negative feedback of ISG56 on the inhibition of IRF7 phospho-

ylation mainly contributes to the stochastic expression pattern of

FNβ .

In summary, our work bridges an important gap between the de-

erministic model that captures the system dynamics and stochastic

odel that characterizes the single cell level. This study not only

epresents a major step toward the comprehensive understanding of

he mechanism of innate immune response but also provides certain

uidance for further biological experiments.
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ppendix A. Parameter sensitivity analysis

To analyze how the system responds to perturbation of the pa-

ameters, we performed sensitivity analysis of the parameters. The

ig. A.14 profiles the sensitivity of the input parameter to all of the

ariables in the model under the perturbation of 10% using the PRCC

ethod [63]. The calculated PRCC is a standardized sensitivity mea-

urement between -1 and 1 such that a negative value indicates an

nverse relationship between the parameter and output, and a posi-

ive value indicates a positive relationship. From the Fig. A.14, we can

ee that the k4(IFNβ positive feedback strength) showed relatively

ignificant effects on IFNβ expression, and the other parameters had

relative slight effect or almost no effect on IFNβ expression.

As the reaction we considered in this model follows the timescale

eparation, the parameters in the non-elementary reaction rate func-

ions are robust under perturbation, and the sensitivity of the non-
Fig. A14. (Color online.) The Sensitivity analysis to
lementary reaction rate functions in the model is small. Additionally,

he reactant stationary assumption is satisfied. According to the re-

ent progresses in the stochastic simulation reported in [40–43,64],

he stochastic quasi-steady state approximation we obtained is ac-

urate and valid under a certain subset of the biological parameter

pace.

ppendix B. Negative feedback regulate the amplitude and

requency of oscillation

To analyze the effects of the negative feedback strength on the

scillation of the system, we fixed the positive feedback strength
the perturbation of parameters in the model.

http://dx.doi.org/10.13039/501100001809
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Fig. A16. (Color online.) The bifurcation diagram of k3 with oscill8 software when the

k4 is set to 0.95. All of the other parameters are set to be the same as in Table 1. The

red circle refers to the saddle node (SN), and the blue star refers to the Hopf bifurcation

node (HB).
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k4 at 1 and varied the negative feedback strength k3 at three dif-

ferent values: 10.663, 12.663 and 15.663. The simulation results

showed that the system runs into oscillations (Fig. B.17). The oscil-

lation amplitude is decreased when we further increased the neg-

ative feedback strength, while the period of the oscillation is in-

creased. The results demonstrate that the negative feedback plays

an important role in modulating the amplitude and frequency of the

oscillations.

Appendix C. Tunability of the dynamic behaviors between the

two parameters

As illustrated above, the negative and positive feedback coordi-

nately contribute to the various dynamic behaviors. Fig. C.18 presents

an overview of the turnability using the phase diagram of the IFNβ
dynamics in the k3 − k4 spanned space. The diagram is composed

of three types of dynamics: monostability, bistability and oscilla-

tion. Because the negative feedback was depicted by a hill function
Fig. B17. (Color online.) The dynamic behavior of the system when the negative feedback st

strength k4 is fixed at 1. All of the other parameters are set to be the same as in Table 1.
erm, we further analyzed the effect of the coefficient of the negative

eedback b2 on the system dynamics. By increasing the coefficient

f the negative feedback b2, the bistable and oscillate areas are

ecreased.

Obviously, we can see that the values of the negative and positive

eedback strength can be cooperatively tuned in the corresponding

egions to achieve desirable behaviors and functions. Similarly, the

ifurcation diagram in the space spanned by k4 and k5 (Fig. C.19A)

s well as the bifurcation diagram in the space spanned by k5 and k6

Fig. C.19B) was analyzed, and the three types of dynamics of the

ystem also exist.

ppendix D. Constant signal input drive diverse response when

uning the positive feedback and negative feedback strength

Switch-like behavior was found across a wide range of biological

ystems [65–67]. Positive feedback is a common mechanism enabling

iological systems to respond to stimuli in a switch-like manner, and

t has been demonstrated that the system robustly increases its re-

ponsiveness while precisely tuning the response to a consistent level

n the presence of varying stimuli [68].

To explore the detailed mechanism of the system, we assumed

hat the system is stimulated by a constant signal and evaluated

he steady state as well as the response time of the system; the re-

ponse time was defined in the Methods section. We changed the

trength of the feedbacks to explore its effects on switch while keep-

ng the other parameters fixed. The input signal was denoted by S, and

e plotted the response as a function of log(S). Simulation results

Fig. D.20A and C) showed that the system exhibited a switch-like

esponse when we increased the positive feedback strength and neg-

tive feedback strength, but the trend of the steady states with input

ignal was opposite. (Fig. D.20A) With an increase in the positive

eedback strength k4, the steady state switched from a low state to

moderately high state. When k4 is larger than 0.5, the steady state

f the system increases to a higher steady state. However, the steady

tate of the system decreased with an increase in the signal input, and

ltimately reached the moderate steady state. (Fig. D.20C) The system

xhibits an opposite switch pattern with an increase in negative feed-

ack strength k3. When k3 is smaller than 4, the system undergoes the

ransition from a much higher state to a moderate high state. How-

ver, when k3 is approximately larger than 4, the system undergoes

he transition from a low state to a higher state. In the first case, the
rength k3 is increased from 10.663 to 12.663 and 14.663, while the positive feedback
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Fig. C18. (Color online.) Bifurcation diagram in the space spanned by the positive feedback strength (k4) and negative feedback strength (k3). With b2 varying in [2.5, 6.17], the

subfigures A, B, C and D correspond to b2 = 2.5, b2 = 3.17, b2 = 4.17 and b2 = 6.17, respectively. The diagram of the dynamical behavior of the system is composed of four regions:

monostability with a high state and low state, bistability and oscillation. All of the other parameters are set to be the same as in Table 1.

Fig. C19. (Color online.) (A) Bifurcation diagram in the space spanned by the positive feedback strength (k4) and IFNβ induction rate (k5). (B) Bifurcation diagram in the space

spanned by the IFNβ induction rate (k5) and ISG56 induction rate (k6). The red circles and green stars on the borderlines denote the saddle-node and Hopf bifurcations, respectively.

All of the other parameters are set to be the same as in Table 1.
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pper threshold changes moderately; in the second case, the lower

hreshold changes moderately, while the ultimate state of the two

ases is the same.

The response time (Fig. D.20B and D) is decreased with an increase

n positive feedback strength or negative feedback strength when the

dded signal is large enough the response time coverage to a single

ine, indicating that, under conditions of transient stimulation, the

ystem ultimately coverage the same state. (Fig. D.20E and F) The

teady state and response time correspond to three different states:

ormal, system without positive feedback and system without nega-

ive feedback. The three different initial levels correspond to different

tates, but the different initial levels converge to the same level with

n increase in the input signal strength.
The positive feedback and negative feedback cooperate to shape

he switch response of the system, indicating that the appropriate

ombination of positive feedback and negative feedback can improve

he ability of the bistable switches in the system.

ppendix E. Description of 16 states in multi-step process

(1) Fig. 10 presented 6 states (states 1, 2, 8, 9, 10 and 16).

(2) The transition between state 2 and state 8 describes the nu-

clear translocation of the key transcription factor IRF7. This

process also contains 6 steps that correspond to states 3–8,

respectively.
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Fig. D20. (Color online.) The signal-response curves of the system. (A, B) The strength of positive feedback increases from 0.1 to 1.5 at a 0.1 step. (C, D) The strength of the negative

feedback increases from 0 to 8 at a 0.8 step; the other parameters are set as Table 1. (A, C) correspond to the steady state of the system and (C, D) are corresponding to the

response time when increasing the positive feedback and negative feedback strength. (E and F) The signal– response curve under three different states: normal, system without

positive feedback and system without negative feedback. Note that the line with the black circle corresponds to default parameters as in Table 1, the red star denotes the case

when there is no negative feedback, and the blue plus corresponds to no positive feedback case. All of the other parameters are set to be the same as in Table 1.
(3) The transition between state 10 and state 16 describes the pro-

cess of the activation of IFN mRNA induction. This process also

contains 6 steps that correspond to states 11–16, respectively.

Therefore, there are a total of 16 different states in the

multi-step process.
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