您当前的位置:首页 > 科学研究 > 学术报告

科学研究

学术报告

S1-equivariant index theorems and Morse inequalities on complex manifolds with boundary
发布时间:2018-08-29     点击次数:
报告题目: S1-equivariant index theorems and Morse inequalities on complex manifolds with boundary
报 告 人: 邵国宽 博士(台湾“中央”研究院数学所)
报告时间: 2018年09月06日 10:30--11:30
报告地点: 理学院东北楼四楼报告厅(404)
报告摘要:

 In this talk, we will present new versions of index theorems and Morse inequalities on complex manifolds with boundary.

Let M be a relatively compact open subset with connected smooth boundary X of a complex manifold M'.

Assume that M admits a holomorphic S1-action preserving the boundary X and the S1-action is transversal and CR on X. We claim that the m-th Fourier component of the q-th Dolbeault cohomology group  H^q_m(overline M) is of finite dimension. By using Poisson operator, we prove a reduction theorem which shows that the formulas about  H^q_m(overline M) in our main theorems involve only integrations over X. This talk is based on the joint work with Chin-Yu HSIAO, Rung-Tzung HUANG and Xiaoshan LI.

打印】【关闭
设为首页 | 加入收藏 | 联系我们
电子邮箱:[email protected]  邮政编码:430072
地址:中国·武汉·武昌·珞珈山 武汉大学数学与统计学院