您当前的位置:首页 > 科学研究 > 学术报告

科学研究

学术报告

What are discrete spheres?
发布时间:2018-09-06     点击次数:
报告题目: What are discrete spheres?
报 告 人: 刘世平 教授(中国科学技术大学)
报告时间: 2018年09月14日 14:30--15:30
报告地点: 理学院东北楼四楼报告厅(404)
报告摘要:

 The Bonnet-Myers theorem states that an n-dimenisonal complete Riemannian manifold M with Ricci curvature lower bounded by a positive number (n-1)K is compact, and its diameter is no greater than $pi/sqrt{K}$ . Moreover, Cheng's rigidity theorem tells that the diameter estimate is sharp if and only if M is the n-dimensional round sphere. Recently, discrete Bonnet-Myers theorems have been established with respect to two types of discrete Ricci curvature, that is, the Ollivier Ricci curvature modified by Lin, Lu, and Yau and the Bakry-Emery curvature. This enables us to explore the discrete analogues of round spheres in graph theory via exploring the corresponding rigidity results. I will present two discrete Cheng type rigidity results. In fact, the discrete analogues of spheres in this sense coincide much with the so-called (strongly) spherical graphs introduced in graphs theory in 2003 as generalizations of hypercubes.

打印】【关闭
设为首页 | 加入收藏 | 联系我们
电子邮箱:[email protected]  邮政编码:430072
地址:中国·武汉·武昌·珞珈山 武汉大学数学与统计学院