您当前的位置:首页 > 科学研究 > 学术讲座

科学研究

学术讲座

Toward an Understanding of Deep Learning for Data Analysis: the Expand-and-Reduce Method
发布时间:2018-05-22     点击次数:
报告题目: Toward an Understanding of Deep Learning for Data Analysis: the Expand-and-Reduce Method
报 告 人: 刘传海 教授(普渡大学)
报告时间: 2018年05月25日 10:30--11:30
报告地点: 数学院二楼报告厅
报告摘要:

 Big data analysis demands computer-intensive data-driven methods more than ever for exploring and modeling complex data structures. Because of its capability and flexibility to represent complex local and global data structures, ``multi-level nets'' or Deep Learning models can be practically very useful. However, architecture configuration and parameter optimization of such models are extremely challenging,both statistically and computationally. To overcome the difficulty, we propose an Expand-and-Reduce method for automated building of Deep-Learning models. The purpose of the method is three-fold: 1) it generates models for Artificial Intelligence-type of applications,
2) it can be used to do confirmatory-type analysis for investigating prior knowledge-based construction of network structures, and 3) it provides as a tool for in-depth investigation and understanding of data from scientific inference perspective. With simple examples, we show that our proposed method is promising to serve its purpose.

打印】【关闭
设为首页 | 加入收藏 | 联系我们
电子邮箱:[email protected]  邮政编码:430072
地址:中国·武汉·武昌·珞珈山 武汉大学数学与统计学院