您当前的位置:首页 > 师资力量 > 科研工作

科研工作

做数学一定要是天才吗?
发布时间:2013-01-12     点击次数:

 作者简介著名数学家陶哲轩,澳大利亚籍华裔,美国加洲大学洛杉矶分校数学教授,菲尔兹(Fields)奖得主,美国国家科学院外籍院士。英文名Terrence Tao,小名Terry,1975年7月17日生于澳大利亚阿德莱德(Adelaide),13岁获得国际数学奥林匹克(IMO)金牌(迄今最年轻的IMO金奖得主),19岁获得Princeton博士学位,24岁成为加洲大学洛杉矶分校的终身教授,2006年8月22日刚满31岁即获得菲尔兹奖,2008年4月当选美国国家科学院外籍院士 

 

 

  做数学一定要是天才吗(Does one have to be a genius to do maths)? 

   ——陶哲轩

    

  对这个问题的回答是一个大写的“不”!为了对数学做出良好的、有意义的贡献,人们必须要刻苦努力,学好自己的领域,掌握一些其他领域的知识和工具,多问问题,多与其他数学工作者交流,要对数学有个宏观的把握。当然,一定水平的才智,耐心的要求,以及心智上的成熟性是必须的。但是,数学工作者绝不需要什么神奇的“天才”的基因、天生的洞察能力,不需要什么超自然的能力使自己总有灵感去出人意料的解决难题。

  大众对数学家的形象有一个错误的认识:这些人似乎都是孤单离群(甚至有一点疯癫)的天才。他们不去关注其他同行的工作,不按常规的方式思考。他们总是能够获得无法解释的灵感(或者经过痛苦的挣扎之后突然获得),然后在所有的专家都一筹莫展的时候,在某个重大的问题上取得了突破性进展。这样浪漫的形象真够吸引人的,可是至少在现代数学学科中,这样的人或事是基本没有的。在数学中,我们的确有很多惊人的结论、深刻的定理。但是,那都是经过几年、几十年、甚至几个世纪的积累,在很多优秀的或者伟大的数学家的努力之下一点一点得到的。每次从一个层次到另一个层次的理解加深的确都很不平凡,有些甚至是非常的出人意料。但尽管如此,这些成就也无不例外的建立在前人工作的基础之上,并不是全新的。例如,Wiles解决费马大定理的工作,或者Perelman解决庞加莱猜想的工作。

  今天的数学就是这样:一些直觉,大量文献,再加上一点点运气,在大量的连续不断的刻苦工作中慢慢的积累,缓缓的进展。事实上,我甚至觉得现实中的情况比前述浪漫的假说更令我满足,尽管我当年做学生的时候,也曾经以为数学的发展主要是靠少数的天才和一些神秘的灵感。其实,这种“天才的神话”是有其缺陷的,因为没有人能够定期的产生灵感,甚至都不能保证每次产生的这些个灵感的正确性(如果有人宣称能够做到这些,我建议要持怀疑态度)。相信灵感还会产生一些问题:一些人会过度的把自己投入到大问题中;人们本应对自己的工作和所用的工具有合理的怀疑,但是上述态度却使某些人对这种怀疑渐渐丧失;还有一些人在数学上极端不自信,还有很多很多的问题。

  当然, 如果我们不使用“天才”这样极端的词汇,我们会发现在很多时候,一些数学家比其他人会反应更快一些,会更有经验,会更有效率,会更仔细甚至更有创造性。但是,并不是这些所谓的“最好”的数学家才应该做数学。这其实是一种关于绝对优势和相对优势的很普遍的错误观念。有意义的数学科研的领域极其广大,决不是一些所谓的“最好”的数学家能够完成的任务,而且有的时候你所拥有的一些想法和工具会弥补一些优秀数学家的过错,而且这些优秀数学家也会在某些数学研究过程中暴露出弱点。只要你受过教育,拥有热情,再加上些许才智,一定会有某个数学的方面会等着你做出重要的、奠基性的工作。这些也许不是数学里最光彩照人的地方,但是却是最健康的部分。往往一些现在看来枯燥无用的领域,在将来会比一些看上去很漂亮的方向更加有意义。而且,应该先在一个领域中做一些不那么光彩照人的工作,直到有机会和能力之时,再去解决那些重大的难题。看看那些伟大的数学家们早期的论文,你就会明白我的意思了。

  有的时候,大量的灵感和才智反而对长期的数学发展有害。试想,如果在早期问题解决的太容易,一个人可能就不会刻苦努力,不会问一些“傻”的问题,不会尝试去扩展自己的领域,这样迟早会造成灵感的枯竭。而且,如果一个人习惯了不大费时费力的小聪明,那么他就不能拥有解决真正困难的大问题所需要的耐心和坚韧的性格。当然,聪明才智是重要的,但如何开发和培养则更重要。

  请记住,专门做数学并非一项体育运动。做数学的目的不是得多少分数,获得多少个奖项,而是为了增加对数学的理解(为自己,也为学生和同事),为她的发展和应用做出贡献。为此,数学需要所有优秀人士的共同努力!

 

附原文(http://www.math.ucla.edu/~tao/):

Does one have to be a genius to do maths?

The answer is an emphatic NO. In order to make good and useful contributions to mathematics, one does need to work hard, learn one’s field well, learn other fields and tools, ask questions, talk to other mathematicians, and think about the “big picture”. And yes, a reasonable amount of intelligence, patience, and maturity is also required. But one does not need some sort of magic “genius gene” that spontaneously generates ex nihilo deep insights, unexpected solutions to problems, or other supernatural abilities.

The popular image of the lone (and possibly slightly mad) genius – who ignores the literature and other conventional wisdom and manages by some inexplicable inspiration (enhanced, perhaps, with a liberal dash of suffering) to come up with a breathtakingly original solution to a problem that confounded all the experts – is a charming and romantic image, but also a wildly inaccurate one, at least in the world of modern mathematics. We do have spectacular, deep and remarkable results and insights in this subject, of course, but they are the hard-won and cumulative achievement of years, decades, or even centuries of steady work and progress of many good and great mathematicians; the advance from one stage of understanding to the next can be highly non-trivial, and sometimes rather unexpected, but still builds upon the foundation of earlier work rather than starting totally anew. (This is for instance the case with Wiles‘ work on Fermat’s last theorem, or Perelman‘s work on the Poincaré conjecture.)

Actually, I find the reality of mathematical research today – in which progress is obtained naturally and cumulatively as a consequence of hard work, directed by intuition, literature, and a bit of luck – to be far more satisfying than the romantic image that I had as a student of mathematics being advanced primarily by the mystic inspirations of some rare breed of “geniuses”. This “cult of genius” in fact causes a number of problems, since nobody is able to produce these (very rare) inspirations on anything approaching a regular basis, and with reliably consistent correctness. (If someone affects to do so, I advise you to be very sceptical of their claims.) The pressure to try to behave in this impossible manner can cause some to become overly obsessed with “big problems” or “big theories”, others to lose any healthy scepticism in their own work or in their tools, and yet others still to become too discouraged to continue working in mathematics. Also, attributing success to innate talent (which is beyond one’s control) rather than effort, planning, and education (which are within one’s control) can lead to some other problems as well.

Of course, even if one dismisses the notion of genius, it is still the case that at any given point in time, some mathematicians are faster, more experienced, more knowledgeable, more efficient, more careful, or more creative than others. This does not imply, though, that only the “best” mathematicians should do mathematics; this is the common error of mistaking absolute advantage for comparative advantage. The number of interesting mathematical research areas and problems to work on is vast – far more than can be covered in detail just by the “best” mathematicians, and sometimes the set of tools or ideas that you have will find something that other good mathematicians have overlooked, especially given that even the greatest mathematicians still have weaknesses in some aspects of mathematical research. As long as you have education, interest, and a reasonable amount of talent, there will be some part of mathematics where you can make a solid and useful contribution. It might not be the most glamorous part of mathematics, but actually this tends to be a healthy thing; in many cases the mundane nuts-and-bolts of a subject turn out to actually be more important than any fancy applications. Also, it is necessary to “cut one’s teeth” on the non-glamorous parts of a field before one really has any chance at all to tackle the famous problems in the area; take a look at the early publications of any of today’s great mathematicians to see what I mean by this.

In some cases, an abundance of raw talent may end up (somewhat perversely) to actually be harmful for one’s long-term mathematical development; if solutions to problems come too easily, for instance, one may not put as much energy into working hard, asking dumb questions, orincreasing one’s range, and thus may eventually cause one’s skills to stagnate. Also, if one is accustomed to easy success, one may not develop the patience necessary to deal with truly difficult problems. Talent is important, of course; but how one develops and nurtures it is even more so.

It’s also good to remember that professional mathematics is not a sport (in sharp contrast to mathematics competitions). The objective in mathematics is not to obtain the highest ranking, the highest “score”, or the highest number of prizes and awards; instead, it is to increase understanding of mathematics (both for yourself, and for your colleagues and students), and to contribute to its development and applications. For these tasks, mathematics needs all the good people it can get.

打印】【关闭
设为首页 | 加入收藏 | 联系我们
电子邮箱:[email protected]  邮政编码:430072
地址:中国·武汉·武昌·珞珈山 武汉大学数学与统计学院